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Toward Machine Emotional Intelligence:
Analysis of Affective Physiological State

Rosalind W. Picard, Senior Member, IEEE, Elias Vyzas, and Jennifer Healey

Abstract—The ability to recognize emotion is one of the hallmarks of emotional intelligence, an aspect of human intelligence that has
been argued to be even more important than mathematical and verbal intelligences. This paper proposes that machine intelligence
needs to include emotional intelligence and demonstrates results toward this goal: developing a machine’s ability to recognize human
affective state given four physiological signals. We describe difficult issues unique to obtaining reliable affective data and collect a large
set of data from a subject trying to elicit and experience each of eight emotional states, daily, over multiple weeks. This paper presents
and compares multiple algorithms for feature-based recognition of emotional state from this data. We analyze four physiological
signals that exhibit problematic day-to-day variations: The features of different emotions on the same day tend to cluster more tightly
than do the features of the same emotion on different days. To handle the daily variations, we propose new features and algorithms
and compare their performance. We find that the technique of seeding a Fisher Projection with the results of Sequential Floating
Forward Search improves the performance of the Fisher Projection and provides the highest recognition rates reported to date for
classification of affect from physiology: 81 percent recognition accuracy on eight classes of emotion, including neutral.

Index Terms—Emotion recognition, physiological patterns, feature selection, Fisher Projection, affective computing, emotional

intelligence.

1 INTRODUCTION

IT is easy to think of emotion as a luxury, something that is
unnecessary for basic intelligent functioning and difficult
to encode in a computer program; therefore, why bother
giving emotional abilities to machines? Recently, a con-
stellation of findings, from neuroscience, psychology, and
cognitive science, suggests that emotion plays surprising
critical roles in rational and intelligent behavior. Most
people already know that too much emotion is bad
for rational thinking; much less well-known is that
neuroscience studies of patients who essentially have their
emotions disconnected reveal that those patients have
strong impairments in intelligent day-to-day functioning,
suggesting that too little emotion can impair rational
thinking and behavior [1]. Apparently, emotion interacts
with thinking in ways that are nonobvious but important
for intelligent functioning. Emotion-processing brain re-
gions have also been found to perform pattern recognition
before the incoming signals arrive at the cortex: A rat can be
taught to fear a tone even when its auditory cortex is
removed, and similar emotion-oriented processing is
believed to take place in human vision and audition [2].
Scientists have amassed evidence that emotional skills
are a basic component of intelligence, especially for learning
preferences and adapting to what is important [3], [4]. With
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increasing deployment of adaptive computer systems, e.g.,
software agents and video retrieval systems that learn from
users, the ability to sense and respond appropriately to user
affective feedback is of growing importance. Emotional
intelligence consists of the ability to recognize, express, and
have emotions, coupled with the ability fo regulate these
emotions, harness them for constructive purposes, and skillfully
handle the emotions of others. The skills of emotional
intelligence have been argued to be a better predictor than
IQ for measuring aspects of success in life [4].

Machines may never need all of the emotional skills that
people need; however, there is evidence that machines will
require at least some of these skills to appear intelligent
when interacting with people. A relevant theory is that of
Reeves and Nass at Stanford: Human-computer interaction
is inherently natural and social, following the basics of
human-human interaction [5]. For example, if a piece of
technology talks to you but never listens to you, then it is
likely to annoy you, analogous to the situation where a
human talks to you but never listens to you. Nass and
Reeves have conducted dozens of experiments of classical
human-human interaction, taking out one of the humans
and putting in a computer, and finding that the basic
human-human results still hold.

Recognizing affective feedback is important for intelli-
gent human-computer interaction. Consider a machine
learning algorithm that has to decide when to interrupt
the user. A human learns this by watching how you
respond when you are interrupted in different situations:
Did you receive the interruption showing a neutral,
positive, or negative response? Without such regard for
your response, the human may be seen as disrespectful,
irritating, and unintelligent. One can predict a similar
response toward computers that interrupt users oblivious to
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their positive or negative expressions. The computer could
potentially appear more intelligent by recognizing and
appropriately adapting to the user’s emotion response.
Although not all computers will need emotional skills,
those that interact with and adapt to humans in real-time
are likely to be perceived as more intelligent if given such
skills. The rest of this paper focuses on giving a machine
one of the key skills of emotional intelligence: the ability to
recognize emotional information expressed by a person.

1.1 Human Emotion Recognition

Human newborns show signs of recognizing affective
expressions such as approval and disapproval long before
they acquire language. Affect recognition is believed to play
an important role in learning and in developing the ability
to attend to what is important and is likely a key part of the
difference between normal child development and devel-
opment of autistic children, who typically have impaired
affect recognition [6]. For example, instead of attending to
the parent’s speech with exaggerated inflection, the autistic
child might tune in to an unimportant sound, missing the
guidance provided by the affective cues.

Emotion modulates almost all modes of human commu-
nication—word choice, tone of voice, facial expression,
gestural behaviors, posture, skin temperature and clammi-
ness, respiration, muscle tension, and more. Emotions can
significantly change the message: sometimes it is not what
was said that was most important, but how it was said. Faces
tend to be the most visible form of emotion communication,
but they are also the most easily controlled in response to
different social situations when compared to the voice and
other modes of expression. Affect recognition is most likely
to be accurate when it combines 1) multiple kinds of signals
from the user with 2) information about the user’s context,
situation, goals, and preferences. A combination of low-
level pattern recognition, high-level reasoning, and natural
language processing is likely to provide the best emotion
inference [7].

How well will a computer have to recognize human
emotional state to appear intelligent? Note that no human
can perfectly recognize your innermost emotions, and
sometimes people cannot even recognize their own emo-
tions. No known mode of affect communication is lossless;
some aspects of internal feelings remain private, especially
if you wish them to be that way or if you sufficiently
disguise them. What is available to an external recognizer is
what can be observed and reasoned about, and this always
comes with some uncertainty. Nonetheless, people recog-
nize each other’s emotions well-enough to communicate
useful feedback. Our aim is to give computers recognition
abilities similar to those that people have.

1.2 Importance of Physiological Emotion
Recognition

When designing intelligent machine interfaces, why not
focus on facial and vocal communication—aren’t these the
modes that people rely upon? There are cases where such
modes will be preferable, as well as other behavior-based
modes, such as gestural activity or time to complete a task.
However, it is a mistake to think of physiology as some-
thing that people do not naturally recognize. A stranger
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shaking your hand can feel its clamminess (related to skin
conductivity); a friend leaning next to you may sense your
heart pounding; students can hear changes in a professor’s
respiration that give clues to stress; ultimately, it is muscle
tension in the face that gives rise to facial expressions.
People read many physiological signals of emotion.

Physiological pattern recognition of emotion has impor-
tant applications in medicine, entertainment, and human-
computer interaction. Affective states of depression, anxi-
ety, and chronic anger have been shown to impede the work
of the immune system, making people more vulnerable to
viral infections, and slowing healing from surgery or disease
([4, chapter 11]). Physiological pattern recognition can
potentially aid in assessing and quantifying stress, anger,
and other emotions that influence health. Certain human
physiological patterns show characteristic responses to
music and other forms of entertainment, e.g., skin con-
ductivity tends to climb as a piece of music “peps you up”
and fall as it “calms you down.” This principle was utilized
in a wearable “affective D]” to allow more personalized
music selections than the one-size-fits-all approach of a disc
jockey [8]. Changes in physiological signals can also be
examined for signs of stress arising while users interact with
technology, helping detect where the product causes
unnecessary irritation or frustration, without having to
interrupt the user or record her appearance. This is a new
area for pattern recognition research: detecting when
products cause user stress or aggravation, thereby helping
developers target areas for redesign and improvement.

Physiological sensing is sometimes considered invasive
because it involves physical contact with the person.
However, not only is technology improving with conduc-
tive rubber and fabric electrodes that are wearable,
washable, and able to be incorporated in clothes and
accessories [9] but also there are new forms of noncontact
physiological sensing on the horizon. In some cases,
physiological sensors are perceived as less invasive than
alternatives, such as video. Video almost always commu-
nicates identity, appearance, and behavior, on top of
emotional information. Students engaged in distance learn-
ing may wish to communicate to the lecturer that they are
furrowing their brow in confusion or puzzlement but not
have the lecturer know their identity. They might not object
to having a small amount of muscle tension anonymously
transmitted, whereas they may object to having their
appearance communicated.

New wearable computers facilitate different forms of
sensing than traditional computers. Wearables often afford
natural contact with the surface of the skin; however, they
do not easily afford having a camera pointed at the user’s
face. (It can be done with a snugly fitted hat and stiff brim to
mount the camera for viewing the wearer’s face, a form
factor that can be awkward both physically and socially.) In
wearable systems, physiological sensing may be set up so
that it involves no visible or heavy awkward supporting
mechanisms; in this case, the physiological sensors may be
less cumbersome than video sensors.

1.3 Related Research

The affect recognition problem is a hard one when you look
at the few benchmarks which exist. In general, people can
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recognize an emotional expression in neutral-content
speech with about 60 percent accuracy, choosing from
among about six different affective labels [10]. Computer
algorithms match or slightly beat this accuracy, e.g., [11],
[12]. Note that computer speech recognition that works at
about 90 percent accuracy on neutrally-spoken speech tends
to drop to 50-60 percent accuracy on emotional speech [13].
Improved handling of emotion in speech is important for
recognizing what is said, as well as how it was said.

Facial expression recognition is easier for people, e.g.,
70-98 percent accurate on six categories of facial expressions
exhibited by actors [14] and the rates computers obtain
range from 80-98 percent accuracy when recognizing
5-7 classes of emotional expression on groups of 8-32 people
[15], [16]. Other research has focused not so much on
recognizing a few categories of emotional expressions but
on recognizing specific facial actions—the fundamental
muscle movements that comprise Paul Ekman’s Facial
Action Coding System—which can be combined to describe
all facial expressions. Recognizers have already been built
for a handful of the facial actions [17], [18], [19], [20], and
the automated recognizers have been shown to perform
comparably to humans trained in recognizing facial actions
[18]. These facial actions are essentially facial phonemes,
which can be assembled to form facial expressions. There
are also recent efforts that indicate that combining audio
and video signals for emotion recognition can give
improved results [21], [22], [23].

Although the progress in facial, vocal, and combined
facial/vocal expression recognition is promising, all of the
results above are on presegmented data of a small set of
sometimes exaggerated expressions or on a small subset of
hand-marked singly-occurring facial actions. The state-of-
the-art in affect recognition is similar to that of speech
recognition several decades ago when the computer could
classify the carefully articulated digits, “0,1,2,...,9,”
spoken with pauses in between, but could not accurately
detect these digits in the many ways they are spoken in
larger continuous conversations.

Emotion recognition research is also hard because
understanding emotion is hard; after over a century of
research, emotion theorists still do not agree upon what
emotions are and how they are communicated. One of the
big questions in emotion theory is whether distinct
physiological patterns accompany each emotion [24]. The
physiological muscle movements comprising what looks to
an outsider to be a facial expression may not always
correspond to a real underlying emotional state. Emotion
consists of more than its outward physical expression; it
also consists of internal feelings and thoughts, as well as
other internal processes of which the person having the
emotion may not be aware.

The relation between internal bodily feelings and
externally observable expression is still an open research
area, with a history of controversy. Historically, James was
the major proponent of emotion as an experience of bodily
changes, such as your heart pounding or your hands
perspiring [25]. This view was challenged by Cannon [26]
and again by Schachter and Singer who argued that the
experience of physiological changes was not sufficient to

1177

discriminate emotions. Schachter and Singer’s experiments
showed that, if a bodily arousal state was induced, then
subjects could be put into two distinct moods simply by
being put in two different situations. They argued that
physiological responses such as sweaty palms and a rapid
heart beat inform our brain that we are aroused and then
the brain must appraise the situation we are in before it can
label the state with an emotion such as fear or love [27].

Since the classic work of Schachter and Singer, there has
been a debate about whether or not emotions are accom-
panied by specific physiological changes other than simply
arousal level. Ekman et al. [28] and Winton et al. [29]
provided some of the first findings showing significant
differences in autonomic nervous system signals according
to a small number of emotional categories or dimensions,
but there was no exploration of automated classification.
Fridlund and Izard [30] appear to have been the first to
apply pattern recognition (linear discriminants) to classifi-
cation of emotion from physiological features, attaining
rates of 38-51 percent accuracy (via cross-validation) on
subject-dependent classification of four different facial
expressions (happy, sad, anger, fear) given four facial
electromyogram signals. Although there are over a dozen
published efforts aimed at finding physiological correlates
when examining small sets of emotions (from 2-7 emotions
according to a recent overview [31]), most have focused on
t-test or analysis of variance comparisons, combining data
over many subjects, where each was measured for a
relatively small amount of time (seconds or minutes).
Relatively few of the studies have included neutral control
states where the subject relaxed and passed time feeling no
specific emotion, and none to our knowledge have collected
data from a person repeatedly, over many weeks, where
disparate sources of noise enter the data. Few efforts
beyond Fridlund’s have employed linear discriminants,
and we know of none that have applied more sophisticated
pattern recognition to physiological features.

The work in this paper is novel in trying to classify
physiological patterns for a set of eight emotions (including
neutral), by applying pattern recognition techniques be-
yond that of simple discriminants to the problem (we use
new features, feature selection, spatial transformations of
features, and combinations of these methods) and by
focusing on “felt” emotions of a single subject gathered
over sessions spanning many weeks. The results we obtain
are also independent of psychological debates on the
universality of emotion categories [32], focusing instead
on user-defined emotion categories.

The contributions of this paper include not only a
new means for pattern analysis of affective states from
physiology, but also the finding of significant classification
rates from physiological patterns corresponding to eight
affective states measured from a subject over many weeks
of data. Our results also reveal significant discrimination
among both most commonly described dimensions of
emotion: valence and arousal. We show that the day-to-
day variations in physiological signals are large, even when
the same emotion is expressed, and this effect undermines
recognition accuracy if it is not appropriately handled. This
paper proposes and compares techniques for handling



1178

day-to-day variation and presents new results in affect
recognition based on physiology. The results lie between
the rates obtained for expression recognition from vocal and
facial features and are the highest reported to date for
classifying eight emotional states given physiological
patterns.

2 GATHERING GooD AFFECTIVE DATA

In computer vision or speech recognition, it has become
easy to gather meaningful data; frame-grabbers, micro-
phones, cameras, and digitizers are reliable, easy to use, and
the integrity of the data can be seen or heard by non-
specialists; however, nonspecialists do not usually know
what comprises a good physiological signal. Although
people recognize emotional information from physiology, it
is not natural to do so by looking at 1D signal waveforms.
Not only does it take effort to learn what a good signal is,
but the sensing systems (A/D converters and buffering-
data capture systems) for physiology do not seem to be as
reliable as those for video and audio. Factors such as
whether or not the subject just washed her hands, how
much gel she applied under an electrode, motion artifacts,
and precisely where the sensor was placed, all affect the
readings. These are some of the technical factors that
contribute to the difficulty in gathering accurate physiolo-
gical data.

Although dealing with the recording devices can be
tricky, a much harder problem is that of obtaining the
ground truth of the data, or getting data that genuinely
corresponds to a particular emotional state. In vision or
speech research, the subject matter is often objective: scene
depth, words spoken, etc. In those cases, the ground-truth
labels for the data are easily obtained. Easy-to-label data is
sometimes obtained in emotion research when a singular
strong emotion is captured, such as an episode of rage.
However, more often, the ground truth—which emotion
was present—is difficult to establish.

Consider a task where a person uses the computer to
retrieve images. Suppose our job is to analyze physiological
signals of the user as he or she encounters pleasing or
irritating features or content within the system. We would
like to label the data according to the emotional state of the
user (ground truth). Here, the problem is complicated
because there is little way of knowing whether the person
was truly pleased or irritated when encountering the
stimuli intended to induce these states. We may have tried
to please, but the user was irritated because of something
she remembered unrelated to the task. We may have tried
to irritate and not succeeded. If we ask the person how she
felt, her answer can vary according to her awareness of her
feelings, her comfort in talking about feelings, her rapport
with the administrator(s) of the experiment, and more.
When you ask is also important—soon and often is likely to
be more accurate, but also more irritating, thereby changing
the emotional state. Thus, measurement of ground truth
disturbs the state of that truth. When it comes to faces or
voices, we can see if the person was smiling or hear if her
voice sounded cheerful, but that still does not mean that she
was happy. With physiology, little is known about how
emotions make their impact, but the signals are also
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potentially more sincere expressions of the user’s state
since they tend to be less mediated by cognitive and social
influences.

2.1 Five Factors in Eliciting Emotion

In beginning this research, we thought it would be simple to
ask somebody to feel and express an emotion and to record
data during such episodes. Indeed, this is the approach
taken in most facial and vocal expression studies to date:
turn the camera and microphone on, ask the subject to
express joy, anger, etc., record it, and label it by what was
requested. However, obtaining high quality physiological
data for affect analysis requires attention to experimental
design issues not traditionally required in pattern recogni-
tion research. Here, we outline five (not necessarily
independent) factors that influence data collection, to serve
as a useful guide for researchers trying to obtain affect data.
We summarize the factors by listing their extreme condi-
tions, but there are also in-between conditions:

1. Subject-elicited versus event-elicited: Does subject
purposefully elicit emotion or is it elicited by a
stimulus or situation outside the subject’s efforts?

2. Lab setting versus real-world: Is subject in a lab or in a
special room that is not their usual environment?

3. Expression versus feeling: Is the emphasis on external
expression or on internal feeling?

4. Open-recording versus hidden-recording: Does subject
know that anything is being recorded?’

5. Emotion-purpose versus other-purpose: Does subject
know that the experiment is about emotion?

The most natural setup for gathering genuine emotions is
opportunistic: The subject’'s emotion occurs as a conse-
quence of personally significant circumstances (event-
elicited); it occurs while they are in some natural location
for them (real-world); the subject feels the emotion internally
(feeling); subject behavior, including expression, is not
influenced by knowledge of being in an experiment or
being recorded (hidden-recording, other-purpose). Such data
sets are usually impossible to get because of privacy and
ethics concerns, but as recording devices are increasingly
prevalent, people may cease to be aware of them, and the
data captured by these devices can be as if the devices were
hidden. Researchers may try to create such opportunistic
situations; for example, showing an emotion-eliciting film
in a theater without telling subjects the true purpose of the
showing, and without telling them that they have been
videotaped until afterward. Even so, an emotion-inducing

1. When the presence of the camera or other recording device is hidden,
it is ethically necessary (via the guidelines of the MIT Committee on the Use
of Humans as Experimental Subjects) to debrief the subject, let them know
why the secrecy was necessary, tell them what signals have been recorded,
and obtain their permission for data analysis, destroying the data if the
subject withholds permission. Unlike with video, it is not yet possible to
record a collection of physiological signals without the subject being aware
of the sensors in some form (although this is changing with new
technology.) However, subjects can be led to believe that their physiology
is being sensed for some reason other than emotions, which is often an
important deception since a subject who knows you are trying to make
them frustrated may, therefore, not get frustrated. We have found that such
deception is acceptable to almost all subjects when properly conducted.
Nonetheless, we believe deception should not be used unless it is necessary
and then only in accord with ethical guidelines.
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movie scene will affect some viewers more than others and
some maybe not at all.

The opportunistic situation contrasts with the experi-
ments typically used to gather data for facial or vocal
expression recognition systems. The common setup is one
in which data of a subject-elicited external expression in a lab
setting, in front of a visible open-recording camera or
microphone, and with knowledge that the data will be
used for analysis of emotion (emotion-purpose) are gathered.
Such expressions, made with or without corresponding
internal feelings, are “real” and important to recognize,
even if not accompanied by true feelings. Social commu-
nication involves both unfelt emotions (emphasizing ex-
pression) and more genuine ones (emphasizing feeling.) A
protocol for gathering data may emphasize external
expression or internal feeling; both are important. More-
over, there is considerable overlap since physical expression
can help induce the internal feeling, and vice-versa.

In this paper, we gathered real data following a subject-
elicited, close to real-world (subject’s comfortable usual
workplace), feeling, open-recording, and emotion-purpose
methodology. The key one of these factors that makes our
data unique is that the subject tried to elicit an internal
feeling of each emotion.

2.2 Single-Subject Multiple-Day Data Collection

The data we gather is from a single subject over many
weeks of time, standing in contrast to efforts that examine
many subjects over a short recording interval (usually
single session on only one day). Although the scope is
limited to one subject, the amount of data for this subject
encompasses a larger set than has traditionally been used in
affect recognition studies involving multiple subjects. The
data are potentially useful for many kinds of analysis and
will be made available for research purposes.

There are many reasons to focus on person-dependent
recognition in the early stages of affect recognition, even
though some forms of emotion communication are not only
person-independent, but have been argued, namely, by
Paul Ekman, to be basic across different cultures. Ekman
and colleagues acknowledge that even simply labeled
emotions like “joy” and “anger” can have different
interpretations across individuals within the same culture;
this complicates the quest to see if subjects elicit similar
physiological patterns for the same emotion. When lots of
subjects have been examined over a short amount of time,
researchers have had difficulty finding significant physio-
logical patterns, which may be in part because physiology
can vary subtly with how each individual interprets each
emotion. By using one subject, who tried to focus on the
same personal interpretation of the emotion in each session,
we hoped to maximize the chance of getting consistent
interpretations for each emotion. This also means that the
expressive data can be expected to differ for another subject
since the way another subject interprets and reacts to the
emotions may differ. Hence, a weakness of this approach is
that the precise features and recognition results we obtain
with this data may not be the same for other subjects.
However, the methodology for gathering and analyzing the
data in this paper is not dependent on the subject; the
approach described in this paper is general.
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Emotion recognition is in an early stage of research,
similar to early research on speech recognition, where it is
valuable to develop person-dependent methods. For perso-
nal computing applications, we desire the machine to learn
an individual’s patterns and not just some average response
formed across a group, which may not apply to the
individual.

The subject in our experiments was a healthy graduate
student with two years acting experience plus training in
visualization, who was willing to devote over six weeks to
data collection. The subject sat in her quiet workspace early
each day, at roughly the same time of day, and tried to
experience eight affective states with the aid of a computer
controlled prompting system, the “Sentograph,” developed
by Clynes [33] and a set of personally-significant imagery
she developed to help elicit the emotional state.

The Clynes protocol for eliciting emotion has three
features that contribute to helping the subject feel the
emotions and that make it appropriate for physiological data
collection: 1) It sequences eight emotions in a way that
supposedly makes it easier for many people to transition from
emotion to emotion. 2) It engages physical expression—ask-
ing the subject to push a finger against a button with a dual
axis pressure sensor in an expressive way—but in a way that
limits motion artifacts being introduced to the physiological
signals. Physical expression gives somatosensory feedback to
the subject, a process that can help focus and strengthen the
feeling of the emotion [34]. 3) It prompts the subject to
repeatedly express the same emotion during an approxi-
mately three minute interval, at a rate dependent on
the emotion in order to try to intensify the emotional
experience [33].

The order of expression of the eight states: no emotion,
anger, hate, grief, platonic love, romantic love, joy, and reverence
was found by Clynes to help subjects reliably feel each
emotion; for example, it would probably be harder on most
subjects to have to oscillate between the positive and
negative states, e.g., joy, hate, platonic love, grief, etc.
However, because interpretations for each of the emotions
may vary with each individual, we do not expect this order
to be optimal for everyone.

Descriptive guidelines on the meaning of each emotion
were developed by the subject before the experiment. The
subject reported the images she used to induce each state,
the degree to which she found each experience arousing
(exciting, distressing, disturbing, tranquil), and the degree
to which she felt the emotion was positive or negative
(valence) (See Table 1). Daily ratings varied in intensity-
both up and down, with no particular trend, but the overall
character of each state was consistent over the weeks of data
collection.

The eight emotions in this study differ from those
typically explored. Although there is no widespread
agreement on the definition and existence of “basic”
emotions and which names would comprise such a list,
researchers on facial expressions tend to focus on anger, fear,
joy, and sadness with disgust and surprise often examined as
well as contempt, acceptance, and anticipation (e.g., [32]).
Theorists still do not agree on what an emotion is and many
of them do not consider love and surprise to be emotions.
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TABLE 1

The Subject’s Descriptions of Imagery and Emotional Character Used for Each of the Eight Emotions
Emotion Imagery Description Arousal Valence
(N)o emotion blank paper, typewriter boredom, vacancy  low neut.
(A)nger people who arouse rage desire to fight very high  very neg.
(H)ate injustice, cruelty passive anger low neg.
(G)rief deformed child, loss of mother loss, sadness high neg.
(P)latonic love family, summer happiness, peace low pos.
Romantic (L)ove romantic encounters excitement, lust very high  pos.
(J)oy The music “Ode to Joy” uplifting happiness  med. high pos.
(R)everence church, prayer calm, peace very low neut.

Our work is less concerned with finding a set of “basic”
emotions and more concerned with giving computers the
ability to recognize whatever affective states might be
relevant in a personalized human-computer interaction.
The ideal states for a computer to recognize will depend on
the application. For example, in a learning-tutor applica-
tion, detecting expressions of curiosity, boredom, and
frustration may be more relevant than detecting emotions
on the theorists” “basic” lists.

Clynes’ set of eight was motivated by considering
emotions that have been communicated through centuries
of musical performance on several continents. We started
with his set not because we think it is the best for computer-
human interaction (such a set is likely to vary with
computer applications—entertainment, business, socializ-
ing, etc.), but rather because this set together with its
method for elicitation had shown an ability to help subjects
reliably feel the emotions and had shown repeatable signs
of physical differentiation in how subjects’ finger pressure
applied to a finger rest differs with each emotion [33], [35], a
measurable outcome that suggests different states were
being achieved. It was important to our investment in long-
term data collection that we have a reliable method of
helping the user repeatedly generate distinct emotional
states.

For the purposes of this research, the specific emotions
and their definitions are not as important as the fact that
1) the subject could relate to the named emotion in a
consistent, specific, and personal way and 2) the emotion
categories span a range of high and low arousal and positive
and negative valence. These two dimensions are believed to
be the most important dimensions for categorizing emo-
tions [36] and continue to be used for describing emotions
that arise in many contexts, including recent efforts to
categorize emotions arising when people look at imagery
[37]. The arousal axis ranges from calm and peaceful to
active and excited, while the valence axis ranges from
negative (displeasing) to positive (pleasing).

2.3 Experimental Method and Construction

of Data Sets
Data were gathered from four sensors: a triode electro-
myogram (€) measuring facial muscle tension along the
masseter (with Ag-AgCl electrodes of size 1lmm each and
10-20 high-conductivity gel), a photoplethysmyograph
measuring blood volume pressure (B) placed on the tip of

the ring finger of the left hand, a skin conductance (S)
sensor measuring electrodermal activity from the middle of
the three segments of the index and middle fingers on the
palm-side of the left hand (with 11mm Ag-AgCl electrodes
and K-Y Jelly used for low-conductivity gel), and a Hall
effect respiration sensor (R) placed around the diaphragm.
The left hand was held still throughout data collection and
the subject was seated and relatively motionless except for
small pressure changes she applied with her right hand to
the finger rest. Sensors and sampling were provided by the
Thought Technologies ProComp unit, chosen because the
unit is small enough to attach to a wearable computer and
offers eight optically isolated channels for recording.
Signals were sampled at 20 Hz.*> The ProComp automati-
cally computed the heart rate (*) as a function of the inter-
beat intervals of the blood volume pressure, B. More details
on this system and on our methodology are available [38].

Each day’s session lasted around 25 minutes, resulting in
around 28 to 33 thousand samples per physiological signal,
with each different emotion segment being around two to
five thousand samples long, due to the variation built into
the Clynes method of eliciting the emotional states [33].
Eight signal segments of the raw data (2,000 samples each)
from Data Set I are shown in Fig. 1. On roughly a third of
the 30 days for which we collected data, either one or more
sensors failed during some portion of the 25-minute
experiment because an electrode came loose or one or more
channels failed to sample and save some of the data
properly. From the complete or nearly-complete sessions,
we constructed two overlapping Data Sets.

Data Set I was assembled before the 30 days were over,
and was formed as follows: Data segments of 2,000 samples
(100 seconds) in length were taken from each of the signals
&,B,G, and R for each of the eight emotions, on each of
19 days where there were no failures in these segments of
data collection. The 2,000 samples were taken from the end
of each emotion segment to avoid the transitional onset
where the subject was prompted to move to the next
emotion. A 20th day’s data set was created out of a
combination of partial records in which some of the sensors
had failed.

2. The electromyogram is the only signal for which this sampling rate
should have caused aliasing. However, our investigation of the signal
showed that it registered a clear response when the jaw was clenched
versus relaxed; thus, it was satisfactory for gathering coarse muscle tension
information.
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Fig. 1. Examples of physiological signals measured from a user while she intentionally expressed anger (left) and grief (right). From top to bottom:
electromyogram (microvolts), blood volume pressure (percent reflectance), skin conductivity (microSiemens), and respiration (percent maximum
expansion). Each box shows 100 seconds of response. The segments shown here are visibly different for the two emotions, which was not true in

general.

Data Set II is a larger data set comprised of 20 days in
which the sensors did not fail during any part of the
experiment for the five signals: £,B,G,R, and H. These
20 days included 16 of the original days from Data Set I, but,
for all 20 days, we used all of the samples available for each
emotion, thereby including the transitional regions. Because
different emotions lasted for different lengths of time, the
2,000 samples in Data Set I were at times closer or farther
away from the beginning of an emotion segment. To avoid
this bias and to maximize data available for training and
testing, Data Set II includes all the samples for all the
emotions and signals over 20 days, roughly 2,000 to
5,000 samples per emotion per signal per day. With an
average of twice the number of samples (or minutes of data)
as Data Set I, Data Set II resulted in an average 10 percent
gain in performance when we compared it to Data Set I
across all the methods.

3 FEATURE EXTRACTION, SELECTION, AND
TRANSFORMATION

Because the signals involved have different and complex
sources, because there are not yet good models to describe
them, and because of an interest in seeing how some
classical methods perform before an extensive modeling
effort is launched, we choose in this paper to explore a
feature-based approach to classification.

3.1 Proposed Feature Sets

The psychophysiology and emotion literature contains
several efforts to identify features of bodily changes (facial
muscle movements, heartrate variations, etc.) that might
correlate with having an emotion (e.g., [31]). We gather a
variety of features, some from the literature and some
that we propose. Several that we propose are physically

motivated, intended to capture the underlying nature of
specific signals, such as the way respiration is quasi-
periodic, while others are simple statistics and nonlinear
combinations thereof. We do not expect the best classifier to
require all the features proposed below or even to require
such a huge number of features. Our effort is to advance the
state-of-the-art in pattern recognition of affect from phy-
siology by proposing a large space of reasonable features
and systematically evaluating subsets of it and transforma-
tions thereof. Below, six statistical features are presented,
followed by 10 more physically-motivated features aimed at
compensating for day-to-day variations. Which features
were found to be most useful (as a function of each of the
classifiers) will be summarized later in Table 9.

The six statistical features can be computed for each of
the signals as follows: Let the signal {&, B,G, R, H} from any
one of the eight emotion segments be designated by X. The
signal is gathered for eight different emotions each day, for
20 days. Let X,, represent the value of the nth sample of the
raw signal, where n=1,..., N, with N =2,000 for Data
SetI, and with N in the range of 2,000 to 5,000 for Data Set II.
Let X, refer to the normalized signal (zero mean, unit
variance):

> Xn — UX

X, = i=1,...,4,

ox

where px and oy are the means and standard deviations of
X as explained below. Following are six statistical features
we investigated:

1. the means of the raw signals

1 N
1754 :NZXM (]-)
n=1
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2. the standard deviations of the raw signals,

LW 1/2
ox = <mZ(Xn - NX)2> ) (2)

n=1

3. the means of the absolute values of the first
differences of the raw signals

1 N-1
§X - m Z |Xn+l - Xn|a (3)

n=1

4. the means of the absolute values of the first
differences of the normalized signals

PR ol S S S
X—N_an; n+1 n —O_Xa ()

5. the means of the absolute values of the second
differences of the raw signals

1 N—-2
W=, ;\sz — Xal, ()

6. the means of the absolute values of the second
differences of the normalized signals

- 1 2. 5 VX
’YX:m;}Xn+2—Xn|:a- (6)

The features (1), (2), (3), (4), (5), and (6) were chosen to
cover and extend a range of typically measured statistics in
the emotion physiology literature [39]. (Means and var-
iances are already commonly computed; the first difference
approximates a gradient.) Note that not all the features are
independent; in particular, 5 x and “x are nonlinear
combinations of other features. Also, the heart rate signal,
'H, is derived from the blood volume pressure signal, 55, by a
nonlinear transformation performed automatically by the
ProComp sensing system. It did not require an additional
sensor and, so, was dependent upon B. The dependencies
are not linear; consequently, they are not obtainable by the
linear combination methods used later to reduce the
dimensionality of the feature space and can potentially be
of use in finding a good transformation for separating the
classes. The comparisons below will verify this.

One advantage of the features in (1), (2), (3), (4), (5), and
(6) is that they can easily be computed in an online way [40],
which makes them advantageous for real-time recognition
systems. However, the statistical features do not exploit
knowledge we may have about the physical sources of the
signals, and provide no special normalization for day-to-
day variations in the signals. Factors such as hand washing,
gel application, and sensor placement can easily affect the
statistics. These influences combine with the subject’s daily
mood and with other cognitive and bodily influences in
presently unknown ways, making them hard to model.
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In an effort to compensate for some of the nonemotion-
related variations of the signals and to include more
physically-motivated knowledge about the signal (such as
underlying periodic excitations), we also compute and
evaluate another set of 10 physiology-dependent features,
f1 — fi0, described below.

From the interbeat intervals of the blood volume pressure
waveform, the Procomp computes the heart rate, , which is
approximately 1/the interbeat intervals. We applied a
500-point (25 sec) Hanning window, h, [41] to form a
smoothed heartbeat rate, b = H * h, then took the mean:

1

The average acceleration or deceleration of the heart beat
rate was calculated by taking the mean of the first
difference:

1 & 1
fo= m (bn+l - bn) = m

n=1

(by — b1). (8)

The skin conductivity signal, S contains high frequency
fluctuations that may be noise; these fluctuations are
reduced by convolving with h, a 25 second Hanning
window, to form s = S x h. We also use a form of contrast
normalization to account for baseline fluctuations; this
measure was proposed by Rose [42] and found to be
valuable over years of psychophysiology [43], [44], where
max(g) and min(g) are, with respect to the whole day’s data
(for all emotions that day):

B smin(s)
Ja= max(s) — min(s) ©)
The mean of the first difference of the smoothed skin
conductivity is also proposed:

1

J1 = Wsn—s) = 3y —7 (55 = s1)- (10)

The respiration sensor measured expansion and contrac-
tion of the chest cavity using a Hall effect sensor attached
around the chest with a velcro band. Let N, be the number of
samples collected that day. To account for variations in the
initial tightness of the sensor placement from day to day, we
formed the mean of the whole day’s respiration data:

1
HR day = m;nm (11)

and then subtracted this to get r =R — urday. TWo
respiration features were then formed as:

1Y
fs = N; T (12)
and
fo=3mg Z( — HRay)” (13)
6 — N1 Tn MR day
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Fig. 2. Power spectral density from 0.0-0.4 Hz in the respiration signal
for eight emotions. The heights of the four bins shown here were used
as features f; — fio.

The four features f7 - fip represent frequency information in
the respiration signal. Each was computed using the power
spectral density function (PSD command) of Matlab, which
uses Welch’s averaged periodogram. The features, illu-
strated in Fig. 2, represent the average energy in each of the
first four 0.1 Hz bands of the power spectral density
range 0.0-0.4 Hz.

3.2 Selecting and Transforming Features

We first compare two techniques that have appeared in the
literature to establish a benchmark: Sequential Floating
Forward Search (SFFS) and Fisher Projection (FP). Next, we
propose and compare a new combination of these, which
we label SFFS-FP. This combination is motivated by the
dual roles of the two methods: SFFS selects from a set of
features, while Fisher Projection linearly transforms a set of
features. Since feature selection is nonlinear, the cascade of
these two methods should provide a more powerful
combination than either alone. This was confirmed in our
experiments.

The Sequential Floating Forward Search (SFFS) method
[45] is chosen because of its consistent success in previous
evaluations of feature selection algorithms, where it has
been shown to outperform methods such as Sequential
Forward Search (SFS), Sequential Backward Search (SBS),
Generalized SFS and SBS, and Max-Min in comparison
studies [46]. Of course the performance of SFFS is data
dependent and the data set here is new and different; SFFS
may not be the best method to use. Nonetheless, because of
its well-documented success in other pattern recognition
problems, it will help establish a benchmark for this new
application area. The SFFS method takes as input the values
of n features. It then does a nonexhaustive search on the
feature space by iteratively including and omitting features.
It outputs one subset of m features for each m, 2 < m < n,
together with its classification rate. The algorithm is
described in detail in [47].
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Fisher Projection (FP) [48] is a well-known method of
reducing dimensionality by finding a linear projection of
the data to a space of fewer dimensions where the classes
are well-separated. Due to the nature of the Fisher
projection method, the data can only be projected down to
c¢—1 (or fewer if one wants) dimensions, assuming that
originally there are more than ¢ — 1 dimensions and c is the
number of classes. If the amount of training data is
inadequate, or if the quality of some of the features is
questionable, then some of the dimensions of the Fisher
projection may be a result of noise rather than a result of
differences among the classes. In this case, Fisher might find
a meaningless projection which reduces the error in the
training data but performs poorly in the testing data. For
this reason, we not only separate training and testing
data, but we also evaluate projections down to fewer
than ¢ — 1 dimensions. Note that if the number of features n
is smaller than the number of classes ¢, the Fisher projection
is meaningful only up to at most n—1 dimensions.
Therefore, the number of Fisher projection dimensions d is
1 <d <min(n,c) — 1, e.g., when 24 features are used on all
eight classes, all d = [1,7] are tried, and when four features
are used on eight classes, all d = [1, 3] are tried.

A Hybrid SFFS with Fisher Projection (SFFS-FP)
method is proposed, implemented, and evaluated here for
comparison. As mentioned above, the SFFS algorithm
proposes one subset of m features for each m, 2 < m < n.
It selects, but does not transform the features. Instead of
feeding the Fisher algorithm with all possible features, we
use the subsets that the SFFS algorithm proposes as input to
the Fisher Algorithm. Note that the SFFS method is used
here as a preprocessor for reducing the number of features
fed into the Fisher algorithm, and not as a classification
method.

4 CLASSIFICATION

This section describes and compares the results of a set of
classification experiments leading up to the best results
(81 percent) shown in Tables 6 and 7.

The SFFS software employs a k-nearest-neighbor (k-NN)
classifier [49], so that it not only outputs the best set of
features according to this classifier, but their classification
accuracy as well. We used the k-NN classifier for bench-
marking the SFFS method, following the methodology of
Jain and Zongker [46]. For FP and SFFS-FP, we used a
MAP classifier, with details below.

In all three comparisons, SFFS, FP, and SFFS-FP, we used
the leave-one-out method for cross-validation because of
the relatively small amount of data available and the high
dimensional feature spaces. In each case, the data point
(vector of features for one day’s data for one emotion) to be
classified was excluded from the data set before the SFFS,
FP, or SFFS-FP was run. The best set of features or best
transform (determined from the training set) was then
applied to the test data point to determine classification
accuracy.

Foreach k, wherewevaried 1 < k < 20, the SFFS algorithm
output one set of m features for each 2 < m < n. For SFFS-FP,
we computed all possible Fisher projections for each of these
feature sets. For both the FP and SFFS-FP methods, we then



1184

TABLE 2
Classification Accuracy for Three Methods
Applied to Data Set I, Starting with the
24 Features nx, ox, bx, Ox, VX, ’T/X, X e (8, B, QR)
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TABLE 3
Number of Dimensions and Number of Features m Used
in the Fisher Projections and Feature Selection
Algorithms that Gave the Results of Table 2

The best-recognized emotions are denoted by their first initial: (N)eutral,
(A)nger, (G)rief, (J)oy, (R)everence.

fit Gaussians to the data in the reduced d-dimensional
feature space and applied Maximum a Posteriori (MAP)
classification to the features in the Fisher-transformed space.
The specific algorithm was:

1. The data point to be classified (the testing set only
includes one point) is excluded from the data set.
The remaining data set is used as the training set.

2. The Fisher projection matrix (used in either FP or
SFFS-FP) is calculated from only the training set.
Then, both the training and testing set are projected
down to the d dimensions found by Fisher.

3. The data in the d-dimensional space is assumed to be
Gaussian. The respective means and covariance
matrices of the classes are estimated from the
training data.

4. The posterior probability of the data point is
calculated.

5. The data point is then classified as coming from the
class with the highest posterior probability.

4.1 Initial Results—Data Set |

Our first comparison was made on Data Set I using (1), (2),
(3), (4), (5), and (6) computed on the four raw physiological
signals, yielding 24 features: ux, ox, Ox, 8x, vx, Vx,
X € (£,B,G,R). The results of SFFS, Fisher, and SFFS-FP
are shown in Table 2. Table 2 shows the results applied to
all eight emotions, as well as the results applied to all sets of
C emotions, where C = 3,4,5. The best-recognized emo-
tions were (N)eutral, (A)nger, (G)rief, (J)oy, and (R)ever-
ence. The states of (H)ate and the states of love, (P)latonic
Love and Romantic (L)ove, were not well-discriminated by
any of the classifiers.

How good are these results—are the differences between
the classifiers significant? For each pair of results here and
through the rest of the paper, we computed the probability
that the lower error rate really is lower, treating error rate
over the 160 (or fewer) trials as a Bernoulli random variable.
For example, (last row of Table 2) we compared the 20 errors
made by Fisher to the 10 errors made by SFFS-FP, over the
60 trials for the three emotions (AJR). The confidence that
the performance was improved was 98 percent. Although
the performance improvements of SFFS-FP over Fisher in
the other rows range from 5 to over 8 percentage points, the
confidences range from 77 percent to 87 percent; thus, the

Number of Random SFFS | Fisher | SFFS-FP Number of No. of Dimensions No. of Features
Emotions | Guessing (%) (%) (%) (%) Emotions | Fisher-24 | SFFS-FP | mspps | msprs_rp
8 12.5 40.6 40.0 46.3 8 6/7 45/7 13 17
5 (NAGJR) 20.0 64.0 60.0 65.0 5 (NAGJR) 3/4 3/4 12-17 15
1 (NAGR) 25.0 700 | 613 63.7 4 (NAGR) 3/3 3/3 9-15,18 19
4 (AGJR) 25.0 725 | 60.0 67.5 4 (AGJR) 3/3 2/3 7-8 12
3 (AGR) 333 833 | 717 80.0 3 (AGR) 2/2 2/2 2-16 12
3 (AJR) 33.3 883 | 66.7 83.3 3 (AJR) 1/2 2/2 6-14 7

The denominator in the dimensions columns is the maximum number of
dimensions that could have been used; half of the time the results were
better using a number less than this maximum (the numerator). When a
range is shown for the number of features, m, then the performance was
the same for the whole range.

performance improvement of SFFS-FP cannot be said
to be statistically significant in these cases, given that
90-95 percent confidence is usually required for that
statement. Nonetheless, all the classifiers in this table
provide statistically significant improved performance over
a random classifier (confidence > 99.99 percent).

Table 3 shows the number of dimensions and the
number of features, respectively, that gave the best results.
From looking at these numbers, we can conclude that
performance was sometimes improved by projecting down
to fewer than ¢ — 1 dimensions for a ¢ class problem. We can
also see that a broad range of numbers of features led to the
best results, but, in no case, were 20 or more features useful
for constructing the best classifier.

4.2 The Problem of Day-Dependence

In visually examining several projections into 2D, we
noticed that the features of different emotions from the
same day often clustered more closely than did features for
the same emotions on different days. To try to quantify this
“day dependence,” we ran a side experiment: How hard
would it be to classify what day each emotion came from, as
opposed to which emotion was being expressed? Because
classifying days is not the main interest, we only ran one
comparison: Fisher Projection applied to the 24 features ux,
ox, bx, b6x, vx, x, X € (€,B,G,R) computed on Data Set L.
Leave-one-out cross-validation was applied to every point,
and MAP classification was used on the classes (days or
emotions), as described above. When the classes were ¢ =
20 days (versus the ¢ = 8 emotions), then the recognition
accuracy jumped to 83 percent, which is significantly better
than random guessing (5 percent) and significantly better
than the 40 percent found for emotion classification using
these features.

The day dependence is likely due to three factors: 1) skin-
sensor interface influences-including hand washing, appli-
cation of slightly different amounts of gel, and slight
changes in positioning of the sensors; 2) variations in
physiology that may be caused by caffeine, sugar, sleep,
hormones, and other nonemotional factors; 3) variations in
physiology that are mood and emotion dependent—such as
an inability to build up an intense experience of joy if the
subject felt a strong baseline mood of sadness that day. The
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Fig. 3. lllustration of a highly day-dependent feature for two emotions from two different days. (a) The feature values for (A)nger and (J)oy from two
different days. (b) Addition of an extra dimension allows for a line b to separate Anger from Joy. The data can be projected down to line a, so the
addition of the new dimension did not increase the final number of features. (c) In the case of data from three different days, the addition of two extra
dimensions allows for a plane p to separate Anger from Joy. The data can again be projected down to line a, not increasing the final number of

features.

first factor is slightly more controllable by using disposable
electrodes that come from the manufacturer containing a
premeasured gel, and always having the subject wash her
hands in the same way at the same time before each session,
steps we did not impose. However, we made an effort to
place the sensors as similarly from day to day as manually
possible and to manually apply the same amount of gel
each day. Nonetheless, many of these sources of variation
are natural and cannot be controlled in realistic long-term
measuring applications. Algorithms and features that can
compensate for day-to-day variations are needed.

4.3 Day Matrix for Handling Day-Dependence

The 24 statistical features extracted from the signals are
dependent on the day the experiment was held. We now
augment the 20 x 24 matrix of the 20 days’ 24 features with
a 20 x 19 day matrix, which appends a vector of length 19 to
each vector of length 24. The vector is the same for all
emotions recorded the same day and differs among days.
(The vectors were constructed by generating 20 equidistant
points in a 19-dim space.) Let us briefly explain the
principle with an illustration in Fig. 3.

Consider when the data come from two different days
and only one feature is extracted. (This is the simplest way
to visualize, but it trivially extends to more features).
Although the feature values of one class are always related
to the values of the other classes in the same way, e.g., the
mean electromyogram signal for anger may always be
higher than the mean electromyogram for joy, the actual

values may be highly day-dependent (Fig. 3a). To alleviate
this problem, an extra dimension can be added before the
features are input into the Fisher Algorithm (Fig. 3b). If the
data came from three different days, two extra dimensions
are added rather than one (Fig. 3c), etc. In the general case,
D — 1 extra dimensions are needed for data coming from
D different days; hence, we use 19 extra dimensions. The
above can be also seen as using the minimum number of
dimensions so that each of D points can be at equal distance
from all others. Therefore, the D — 1 dimensional vector
contains the coordinates of one such point for each day.

The effect of the day matrix on classification can be seen
in Table 4, where we run Fisher and SFFS-FP with and
without the day matrix, and compare it to SFFS, running
with the same 24 features as above. Note that it is
meaningless to apply SFFS to the day matrix, so that
comparison is omitted. The use of the day matrix improves
the classification by 3.1, 4.3, 6.9, and 9.4 percent; although
only the highest two of these improvements are significant
at > 90 percent and > 95 percent (the other confidences are
71-78 percent).

Table 4 also reveals that all the methods perform better
on Data Set II than on Data Set I. The improvements range
from 5 to 13 percentage points, with confidences 81 percent,
94 percent, 97 percent, 98 percent, and 99 percent.

4.4 Baseline Matrix for Handling Day-Dependence

We propose and evaluate another approach: use of a baseline
matrix where the Neutral (no emotion) features of each day

TABLE 4
Classification Accuracy for All Eight Emotions for Data Set | and Data Set Il Improves with the Use of the Day Matrix

Data Set Without Day Matrix With Day Matrix
with SFFS Fisher SFFS-FI’ | Fisher SFFS-FP
24 Features || (%) (%) (%) (%) (%)
DataSet T 40.6 40.0 46.3 49.4 50.6
DataSet 11 49.4 51.3 56.9 54.4 63.8

These results were obtained with 24 statistical features, nx, ox, Ox, ox, vx, Yx, X € (§,B,G,R) for both data sets. The day matrix adds

19 dimensions to each feature that is input into the Fisher Algorithm.
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TABLE 5
Data Set |, 7-Emotion (All but the Neutral State)
Classification Results, Comparing Three Methods
for Incorporating the Day Information

Feature Space (Dimensions) | SFFS | Fisher | SFFS-FP
(%) | (%) (%)
Original (24) 42.9 39.3 45.0
Orig+ Day (43) N/A | 393 157
Orig.+ Base. (48) 49.3 40.7 54.3
Orig.+ Base.+ Day (67) N/A | 35.0 19.3

are used as a baseline for (subtracted from) the respective
features of the remaining seven emotions of the same day.
This gives an additional 20 x 24 matrix for each of the seven
nonneutral emotions. The resulting classification results on
seven emotions, run on Data Set I, are in Table 5, together
with an additional trial of the day matrix for this case. All
the results are significantly higher than random guessing
(14.3 percent) with confidence > 99.99 percent. Comparing
among the various ways of handling day-dependence, we
find the most significant improvement to be SFFS-FP using
the baseline matrix, which at 54.3 percent is an improve-
ment over 45 percent (confidence 94 percent). The perfor-
mance improvements of SFFS-FP over that of Fisher in the
last two rows of the table are also statistically significant
(confidence 99 percent). Combining all the features (original
24 + baseline + day) appears to result in a decrease in
performance, suggesting the limitations of Fisher with too
many bad dimensions, where it cannot select out features,
but only transform them. However, the decreases (from 54.3
to 49.3 and 40.7 to 35.0) have 80 percent and 84 percent
confidence, so are not considered significant.

4.5 Better Features for Handling Day-Dependence

The comparisons above were all conducted with the
original six statistical features (1), (2), (3), (4), (5), and (6);
we would now like to see how the features f; — fio
influence classification. We compare four spaces of features
from which the algorithms can select and transform subsets:
the original six, ux, ox, Ox, Sy, vx, 9x, for X € (€,B,G,R)
for a total of 24 features; these same 24 features plus the
same six statistics for X = H for a total of 30 features;
features f; — fio plus pe which were shown to be useful in
our earlier investigation [50], and the combination of all 40
of these.

The results are in Table 6. First, we consider the case
where all 40 features are available (the last row). Comparing
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each entry in the last row of this table with the same column
entry in the first row, we find that all the results are
significantly improved (confidence > 99.7 percent).

Next, we look at the results with the day matrix. It appears
to improve upon the performance of the statistical features in
the first two rows; however, the improvements are only a few
percentage points and are not significant (confidences 63-
89.5 percent). The additional features of the day matrix can
become a liability in the presence of the f; — fiy features,
which compensate much better for the day-to-day variations
(the decrease from 70 percent to 61.3 percent is significant at
95 percent confidence.) Without the day matrix, the f; — fio
features alone perform significantly better than the statistical
features (confidence > 93 percent in all six comparisons.)

The best performance occurs when the methods have all
forty features at their disposal and the individual best of
these occurs with SFFS-FP. The overall best rate of
81.25 percent is significantly higher (> 95 percent con-
fidence) than 16 of the cases shown in Table 6. The three
exceptions are in the last row—compared to rates of
78.8 percent and to 77.5 percent the confidences are only
71 percent and 79 percent that 81.25 percent is a genuine
improvement.

Table 7 affords a closer look at breaking points of the
best-performing case: the SFFS-FP algorithm operating on
the full set of 40 features. Summing columns, one sees that
the greatest number of false classifications lie in the
categories of (P)latonic love and (J)oy. It is possible that
this reflects an underlying predilection on the part of this
subject toward being in these two categories, even when
asked to experience a different emotion; however, one
should be careful not to read more into these numbers than
is justified.

Because of the longstanding debate regarding whether
physiological patterns reveal valence differences (pleasing-
displeasing aspects) of emotion, or only arousal differences,
we consider here an alternate view of the results in Table 7.
Table 8 rearranges the rows and columns into groups
based on similar arousal rating or similar valence rating.
From this, we see that both arousal and valence are
discriminated at rates significantly higher than random
(confidence > 99.99 percent), and that the rate of discrimi-
nation based on valence (87 percent) versus the rate
obtained based on arousal (84 percent) do not differ in a
statistically significant way.

TABLE 6
Comparative Classification Rates for Eight Emotions for Data Set Il

Number of Features: Which formed initial space Without Day Matrix With Day Matrix
SFFS | Fisher | SFFS-FP | Fisher | SFFS-FP
(%) | (%) (%) (%) (%0)
24: px, ox, 0x, 6x, vx, ¥x, X € (£,B,G.R) 49.4 51.3 56.9 54.4 63.8
30: ux, ox, éx, 0x, vx, 9x, X € (£,B,G, R, H) | 52.5 56.9 60.0 58.8 63.8
11 fi, faue oo, fros pe 60.6 70.0 70.6 61.3 63.1
40: all of the ahove 65.0 775 81.25 77.5 78.8

The day matrix adds 19 features to the data input to the Fisher algorithm, offering no improvement when f, — fi, are available.
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TABLE 7
Confusion Matrix for the Method that Gave the Best Performance Classifying Eight Emotions with Data Set Il (81.25 Percent)

| [N[A[H[G[P[L][J R ] Tota]
(N)eutral 171 0 0 0 3 0 0 0 20
(A)nger 0 |17 0 | 0 | 2 110 0 20
(Ih)atred 0 0 (14| 1 0 0 3 2 20
(G)rief 0 0 1 (15| 0 0| 4 0 20
(P)latonic Love 0 0 0 0 |17 ]| 2 1 0 20
Romantic (L)ove 1 1 0 0 3 (14 1 0 20
(J)oy 0 0 1 2 0 0 [17] O 20
(R)everence 0 0 0 1 0 0 0 |19 20

| Total [ I8 ]18 16 [19[25 [ 1726 [ 21 ] 160 |

An entry’s row label is the true class, the column label is what it was classified as.

4.6 Finding Robust Features

A feature-based approach presents not only a virtually
unlimited space of possible features that researchers can
propose, but an intractable search of all possible subsets of
these to find the best features. When people hand-select
features, they may do so with an intuitive feel for which are
most important; however, hand-selection is rarely as
thorough as machine selection and tends to overlook non-
intuitive combinations that may outperform intuitive ones.
Machine selection is therefore preferable, even when it is
suboptimal (nonexhaustive). Here, we analyze which
features the machine searches selected repeatedly. The
results of automatic feature selection from twelve experi-
ments involving SFFS (either SFFS as in Jain and Zongker’s
code, or SFFS-FP, or SFFS-FP with the Day Matrix) are
summarized in Table 9.

From Table 9, we see that features such as the means of
the heart rate, skin conductivity, and respiration were never
selected by any of the classifiers running SFFS, so that they
need not have even been computed for these classifiers. At
the same time, features such as the mean absolute normal-
ized first difference of the heart rate (83, the first difference
of the smoothed skin conductivity (fs), and the three higher
frequency bands of the respiration signal (fs — fio), were
always found to contribute to the best results. Features that
were repeatedly selected by classifiers yielding good
classification rates can be considered more robust than

those that were rarely selected, but only within the context
of these experiments.

There were surprises in that some features physiologists
have suggested to be important such as f; were not found
to contribute to good discrimination. Although the results
here will be of interest to psychophysiologists, they must
clearly be interpreted in the context of the recognition
experiment here and not as some definitive statement about
a physical correlate of emotion.

5 CONCLUSIONS

This paper has suggested that machine intelligence should
include skills of emotional intelligence, based on recent
scientific findings about the role of emotional abilities in
human intelligence, and on the way human-machine
interaction largely imitates human-human interaction. This
is a shift in thinking from machine intelligence as one of
primarily mathematical, verbal, and perceptual abilities.
Emotion is believed to interact with all of these aspects of
intelligence in the human brain. Emotions, largely over-
looked in early efforts to develop machine intelligence, are
increasingly regarded as an area for important research.
One of the key skills of emotional intelligence for adaptive
learning systems is the ability to recognize the emotional
communication of others. Even dogs can recognize their
owner’s affective expressions of pleasure or displeasure—an

TABLE 8
Rearrangements of Table 7, Showing Confusion Matrices for Emotions Having Similar Valence
Ratings (139/160 = 87 Percent) and Similar Arousal Ratings (135/160 = 84 Percent)

| Valence Rating || Very Neg. | Neg. | Neutral | Pos. || Total |

Very Neg. (A) 17 0 0 3 20

Neg. (I,G) 0 31 7 7 0

Neutral (N,R) 0 1 36 3 40

Pos. (P,L,J) 1 1 55 60

‘ Arousal Rating H Very High | Med. High | High | Low | Very Low || Total |

Very High (A L) 33 1 0 6 0 40
Med. High (J) 0 17 ) 1 0 20
High (G) 0 4 15 1 0 20
Low (N,H,P) 2 4 1 | 51 2 60
Very Low (R) 0 0 1 0 19 20
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TABLE 9
Summary (Along Rows) of when Each Feature Was Chosen in the SFFS-Based Methods of Table 6: The Standard SFFS (S), SFFS
Followed by Fisher Projection (SF), and SFFS Followed by Fisher Projection Using the Day Matrix (SFD)

24 Statistical Features | 30 Statistical Features | fi1, f2,..., fio and psg All 40 Features Grand

S | SF | SFD | Sum | S | SF | SFD | Sum | S | SF | SFD | Sum | S | SF | SFD | Sum Total i
pe || 0 1 1 2/3 |0 1 1 2/3 1 1 1 3/3 |0 0 1 1/3 8/12 | 0.67 |
os 0 1 1 2/3 0 1 1 2/3 0 1 1 2/3 6/9 0.67 |
be 1 1 1 3/3 1 1 1 3/3 1 0 1 2/3 8/9 0.89 |
be 1 1 1 3/3 0 1 1 2/3 0 1 1 2/3 7/9 0.78 |
Ye 1 1 1 3/3 1 1 1 3/3 0 0 1 1/3 7/9 0.78
Ye 1 1 1 3/3 0 1 1 2/3 0 1 1 2/3 7/9 0.78 |
pe [ 1] 1 T | 3/3 [o] 1 1 | 2/3 0 1 T [ 2/3 ] 7/9 [078 |
o5 |0 ] 0 1 /3 [0] 0 0 | 0/3 0l 0 0 | 0/3 |[ 1/9 | 011 |
55 || 0] 0 0 | 0/3 [0 1 T | 2/3 0l o0 0 | o/3 || 2/9 | 0.22
§5 || 1] 0 1 | 2/3 [o] 1 1 | 2/3 0 1 1 | 2/3 || 6/9 |0.67
5 [0 ] 0 0 | 0/3 0] 0 0 | 0/3 0l 0 0 | 0/3 |[ 0/9 | 0.00
35 [0 ] 1 T | 2/3 0] 1 T | 2/3 0l 0 T | 1/3 || 5/9 | 0.56
Lt 0 0 0 [ 0/3 0] 0 0 ] 0/3 ] 0/6 |0.00]
o1 0 0 0 | 0/3 0l o0 1 | 1/3 || 1/6 | 017 |
870 0 1 1 | 2/3 0 1 1 | 2/3 || 4/6 | 0.67 |
8 1|1 1 | 3/3 1|1 1 | 3/3 || 6/6 | 1.00 |
v 0 0 0 | 0/3 0 1 T | 2/3 || 2/6 033 |
3 I 1 1 | 3/3 0 1 1 | 2/3 | 5/6 | 083 |
i 1 0 | 1/3 0] 0 1 | 1/3 || 2/6 | 033 |
f2 1 1 1 3/3 0 1 1 2/3 5/6 0.83 |
ps O 0 0 |0/3 0] 0 0 [ 0/3 0 0 0 | 0/3 || 0/9 | 0.00
os |0 | 0 0 | 0/3 [0] 0 I 1/3 0o 0 T | 1/3 |[ 2/9 | 0.22
§s || 1| 1 T | 3/3 [0 1 1 | 2/3 1| 1 T | 3/3 || 8/9 | 0.89
§s |[1] 1 1 | 3/3 [o] 1 1 | 2/3 1|1 1 | 3/3 || 8/9 | 0.89
vs | 1| 1 T | 3/3 0] 1 1 | 2/3 0 1 T | 2/3 || 7/9 | 0.78
3s 1] 1 T | 3/3 0] 1 1 | 2/3 0 1 T | 2/3 || 7/9 | 0.78
fs 1 0 1/3 |0 0 0 0/3 1/6 | 0.17 |
i 1] 1 T | 3/3 | 1] 1 1T | 3/3 || 6/6 | 1.00 |
ur ][ 0] 0 0 |0/3 0] 0 0 [ 0/3 0] 0 0 ] 0/3 || 0/9 ]0.00]
or || 0] O 1 /3 [0] 0 0 | 0/3 0] 0 0 | 0/3 |[ 1/9 | 011 |
S || L | L T | 3/3 0] 1 1 | 2/3 0 1 T | 2/3 || 7/9 | 078 |
S || L[ 1 T | 3/3 [1] 1 1 | 3/3 0 1 T | 2/3 || 8/9 | 0.89 |
v [ 1] 1 T | 3/3 [0 1 1 | 2/3 0 1 T | 2/3 || 7/9 | 078 |
= || 1 1 1 3/3 10 1 1 2/3 0 1 1 2/3 7/9 ] 0.78 |
Iz 1] 0] 0o |1/3 0] 1 T | 2/3 || 3/6 | 0.50
fo 1] o] o |1/3 0] 1 T | 2/3 || 3/6 | 0.50
Iz 1] 1 I | 3/3 0] 1 T | 2/3 || 5/6 | 0.83
s T 1 T | 3/3 | 1] 1 T | 3/3 || 6/6 | 1.00
o 1] 1 I | 3/3 | 1] 1 1T | 3/3 || 6/6 | 1.00
10 1] 1 I | 3/3 | 1] 1 1T | 3/3 || 6/6 | 1.00

The features listed in the left-most column are grouped by signal for easier physiological interpretation: electromyogram (€), blood-volume pressure
(B), heart rate (H), skin conductivity (S), and respiration (R). The totals at the right, when high, suggest that the feature may be a robust one

regardless of the classification method.

important piece of feedback. One of the difficulties research-
ers face in this area is the sheer difficulty of getting data
corresponding to real emotional states; we have found that
efforts in this area are more demanding than traditional
efforts to get pattern recognition data. We presented five
factors to aid researchers trying to gather good affect data.
The data gathered in this paper contrasts with that
gathered for most other efforts at affect pattern recognition
not so much in the use of physiology versus video or audio,
but in its focus on having the subject try to generate a feeling

versus having the subject try to generate an outward
expression. One weakness of both data-gathering methods is
that the subject elicited the emotion, versus a situation or
stimulus outside the subject eliciting it. Our group at MIT
has recently designed and built environments that focus on
emotions not generated deliberately by the subject, e.g.,
collecting affective data from users driving automobiles in
city and highway conditions [38] and from users placed in
frustrating computer situations [51]; both of these areas aim
at data generation in an event-elicited, close to real-world,
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feeling, open-recording, other-purpose experiment, with effort
to make the open recording so comfortable that it is
effectively ignored. Nonetheless, much work remains to
be done in gathering and analyzing affect data; attempts to
create situations that induce emotion in subjects remain
subject to uncertainty.

One facet of emotion recognition is developed here for
the first time: classification of emotional state from physio-
logical data gathered from one subject over many weeks of
data collection. The corpus of person-dependent affect data
is larger than any previously reported, and the methodology
we developed for its analysis is subject-independent. In
future work, the patterns of many individuals may be
clustered into groups, according to similarity of the
physiological patterns, and these results leveraged to
potentially provide person-independent recognition.

Prior to our efforts, researchers have not reported the
way in which physiological features for different emotions
from the same day tend to be more similar than features for
the same emotions on different days. This side-finding of
our work may help explain why so many conflicting results
exist on prior attempts to identify emotion-dependent
physiological correlates. The day-dependent variations that
we found and the ways we developed of handling them
may potentially be useful in handling across-subject
variations. We proposed methods of normalizing features
and baselining, showing that the normalizing features gave
the best results, but have the drawback of not being easily
implemented in an online way because of the requirement
of having session-long summarizing information.

We found that the Fisher Projection applied to a subset of
features preselected by SFFS always outperformed Fisher
Projection applied to the full set of features when assessing
percentage of errors made by the classifiers. However, only
a few of the improvements of SFFS-FP over FP were
significant at > 95 percent; the rest had confidences ranging
from 58-87 percent. From the significant improvements, we
surmize that the Fisher Projection’s ability to transform the
feature space may work better when poorer-performing
features are omitted up front. The combination is synergis-
tic: fracturization followed by feature transformation, and
may well apply in other domains.

Forty features were proposed and systematically eval-
uated by multiple algorithms. The best and worst features
have been identified for this subject. These are of interest in
the ongoing search for good features for affect recognition
and may aid in trying to understand the differential effects
of emotions on physiology.

Although the precise rates found here can only be
claimed to apply to one subject, the methodology developed
in this paper can be used for any subject. The method is
general for finding the features that work best for a given
subject and for assessing classification accuracies for that
subject.

The results of 81 percent recognition accuracy on eight
categories of emotion are the only results we know of for
such a classification and are better than machine recognition
rates of a similar number of categories of affect from speech
(around 60-70 percent) and almost as good as automated
recognition of facial expressions (around 80-98 percent).
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Because there were doubts in the literature that physiological
information shows any differentiation other than arousal
level, these results are exciting. However, these results do not
imply that a computer can detect and recognize your
emotions with 81 percent accuracy because of the limited
set of emotions examined, because of the optimistic estimates
of error given by the leave-one-out method because of the
fact that this experiment, like others in the literature, has only
looked at forced choice among presegmented data because of
the use of only one subject’s long term data and because of
the nature of true emotion, which consists of more than
externally measurable signals. We expect that joint pattern
analysis of signals from face, voice, body, and the surround-
ing situation is likely to give the most interesting emotion
recognition results, especially since people read all these
signals jointly.

The greater than six-times-chance recognition accuracy
achieved in this pattern recognition research is nonetheless
a significant finding; it informs long-debated questions by
emotion theorists as to whether there is any physiological
differentiation among emotions. Additionally, the finding
of significant classification rates when the emotion labels
are grouped either by arousal or by valence lends evidence
against the belief that physiological signals only differenti-
ate with respect to arousal; both valence and arousal were
differentiated essentially equally by the method we
developed.

A new question might be stated, “What is the precise
bodily nature of the differentiation that exists among
different emotions and upon what other factors does this
differentiation depend?” We expect that physiological
patterning, in combination with facial, vocal, and other
behavioral cues, will lead to significant improvements in
machine recognition of user emotion over the coming
decade, and that this recognition will be critical for giving
machines the intelligence to adapt their behavior to interact
more smoothly and respectfully with people. However, this
“recognition” will be on measurable signals, which we do
not expect to include one’s innermost thoughts. Much work
remains before emotion interpretation can occur at the level
of human abilities.
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