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Abstract

In this paper we explore the use of features derived from
multiresolution analysis of speech and the Teager En-
ergy Operator for classification of drivers’ speech un-
der stressed conditions. The potential stress categories
are determined by driving speed and the frequency with
which the driver has to solve a mental task while driving.
We first use an unsupervised approach to gain some un-
derstanding as to whether the discrete stress categories
form meaningful clusters in feature space, and use the
clustering results to build a user-dependent recognition
system which combines local discriminants of 4 discreet
stress categories. Recognition results are reported for 4
subjects.

1 Introduction

Much of the current effort on studying speech under
stress has been aimed at detecting several stress condi-
tions for improving the robustness of speech recogniz-
ers; typical categories of speech under stress have tar-
geted perceptual (e.g. Lombard effect), psychological
(e.g. timed tasks), as well as physical stressors (e.g.
roller-coaster rides, high G forces) [1]. In this work we
are interested in modeling speech in the specific context
of driving where the speech has been produced under
varying conditions of cognitive load which are hypothe-
sized to induce a level of stress on the driver. The results
of this research may be not only relevant to building
recognition systems that are more robust in the context
described, but also applicable to and inspired by ap-
plications that may infer the underlying affective state
accompanying an utterance. We have chosen to simu-
late the scenario of driving while solving a stressful task
on the phone as an application in which knowledge of
the driver’s state may prove relevant to the dynamics of
driving and may provide benefits ranging from a more
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fluid interaction with a speech interface to more serious
safety concerns.

The recent literature discussing the effects of stress
on speech applies the label of stress to different phenom-
ena surrounding the production of the acoustic signal.
Following the taxonomy proposed by Murray et al. [2],
we are investigating the effect on speech of what the
authors call “third-order stressors,” that is, the effect
of external stimuli as well as underlying affective condi-
tions.

2 Speech Database

The speech data was collected in an experiment in a
driving simulator at the Nissan’s Cambridge Research
Lab. Subjects were asked to complete a series of rounds
while engaged on a simulated phone task: while the
subject drove, a speech synthesizer prompted the driver
with a math question consisting of adding up two num-
bers whose sum was less than 100. We controlled for
the number of additions with and without carry-ons in
order to maintain an approximately constant level of
difficulty across trials. The two independent variables
in this experiment were the driving speed and the fre-
quency at which the driver had to solve the math ques-
tions. Subjects drove at 60 m.p.h. in the low speed
condition and at 120 m.p.h. in the high speed condition
(the perceptual speed in the simulator is approximately
half). When a subject complained of motion sickness in
the high speed condition, the speed was reduced to 100
m.p.h. The frequency at which the driver was prompted
for an answer was once every 9 seconds in the slow con-
dition, and once every 4 seconds in the fast condition.
The driver’s answers were captured by a head-mounted
microphone and recorded in VHS format.

3 Feature Set

Nonlinear features of the speech waveform have received
much attention in the context of studying speech un-
der stress; in particular, the Teager Energy Operator



(TEO) has been the subject of several studies which
have proposed its robustness to noisy environments and
usefulness in stress classification [3],[4], [5]. Another use-
ful approach for analysis of speech and stress has been
subband decomposition or multi-resolution analysis via
wavelet transforms [6],[7]. Multi-resolution analysis and
TEO-based features have also been combined in the con-
text of recognizing speech in the presence of car noise
and shown to yield superior rates [5]. In this work we in-
vestigate a feature set consisting of variants of features
proposed in [5] and [7] based on the TEO and multi-
resolution analysis and apply it to the task of modeling
different categories of drivers’ stress.

3.1 Subband Based Feature Extraction

After the speech signal has been sampled at 8kHz, a
wavelet packet decomposition is applied in this approach
to the discrete signal z[n] in order to obtain a multireso-
lution analysis into M = 21 bands corresponding to the
frequency division shown in Figure 1. This process can
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Figure 1: Subband Decomposition

be viewed as filtering the speech through the branches of
a tree-structured filter bank, or as performing a wavelet
packet decomposition and then reconstructing the sub-
band signals from the wavelet coefficients obtained at
particular scales. The wavelet packet decomposition in
this implementation is based on repeated iterations of
the minimum-phase 8-tap low and high pass filters as-
sociated with the orthogonal Daubechies-4 [8].
Following the decomposition, the average Teager en-
ergy is found for every subband signal according to
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where N,, is the number of time samples in the m*?

band and \Il() is the discrete Teager energy operator:
¥ (z[n]) = 2°[n] — z[n — z[n+ 1] (2)

An inverse DCT transform is then applied to the log of
the energy coefficients to obtain the TEO-based “cep-
strum coefficients” Ej [5]:

E = Zlog(em)COS[W] I=1,---,L (3)

The extraction of the cepstral coefficients defined in (3)
is applied to the speech waveform at every frame. Define
then EUl as the L x 1 vector containing the cepstral
coefficients from the rt* frame: El'] = [Egr], cee EE]]T.
In order to reflect frame-to-frame correlations within an
energy subband, the following autocorrelation measure
has been proposed [7]:
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where 7 is the lag between frames, T is the num-
ber of frames included in the autocorrelation window,
and j is an index which spans all correlation coeffi-
cients within the same scale along all frames to nor-
malize the autocorrelation. Define the vector contain-
ing the logarithm of the L autocorrelation coefficients as

ACE_LY = [log ACEYL, - 1og ACEY)]" We define
the frame-based feature vector as the set of L cepstral

coefficients and the log of the L autocorrelation coeffi-

clents: o
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Taking the log of (4) is done to avoid modeling a fi-
nite support density distribution (which results from the
normalization of (4)) with a single or a small number of
Gaussians in the learning stage where the log transfor-
mation might provide for a better fit to the distribution.
The values of the constants for this implementation are
M =21,7=1,T =2, and L = 10 (resulting in a fea-
ture vector of dimensionality 20). The frame features
are derived from 24 msecs. of speech and are computed
every 10 msecs.

4 Analysis

The speech data was collected under four distinct cate-
gories resulting from combining the slow and fast speech
conditions with the slow and fast frequency of solving
the math tasks. One of the hypotheses of this data
collection scheme is that the combined effect of driving
while engaged on the solution of a cognitive problem
might produce a level of stress which might be reflected
in the driver’s speech. It is not clear, however, to what
degree, if any, the four different conditions yield four
distinct vocal states, and whether such states are re-
flected in the speech features under consideration. For
this reason, the first section of this data analysis takes
an unsupervised approach to investigate whether we can
find clusters of time series which show some homogene-
ity with respect to a given class to gain insight as to
whether the stress categories defined a prior: are also



delineated in feature space. The ultimate goal of this
research, however, is to be able to discriminate between
these stress conditions if they indeed are relevant to the
vocal data collected. In the second part of this section,
we use the results of the unsupervised clustering to train
classifiers to learn and predict the categorical data.

Since it is not known how the categorical patterns
may vary across different subjects and whether the ex-
perimental paradigm was equally successful in inducing
the desired level of stress in the response, the analy-
sis that follows is speaker dependent. In Section 5, we
present the results for four subjects.

4.1 Clustering

In this section we investigate whether homogeneous
clusters emerge when we apply unsupervised clustering
techniques to the data. To handle the temporal nature
of the data, we model each cluster with a Hidden Markov
model (HMM). HMM parameters and cluster member-
ships are iteratively estimated by embedding the HMM
training algorithm (which learns the parameters of a
cluster given its data assignment) within a K-means al-
gorithm (which assigns time series to clusters according
to the probability of membership to each cluster). The
algorithm is outlined below:

Given K clusters and a data set consisting of N time
series {X} = {x},---,xN}, let /\g) (k=1 K) be
the parameters of the £** HMM at the I*? iteration and
let ];’511) = argmanP(xﬂ/\g)) be the cluster that max-
imizes the probability of the n'® time series at the [*"

iteration and )\g) its parameters.

n

1. Initialize cluster memberships. Randomly assign
time series to clusters to obtain data sets for each

cluster {X}Sﬂo). Set 1 = 0.

2. Find initial total log likelihood of the assignment:
PO =3 log P(x}|A\").

3. For £ = 1,--- K, apply the Baum-Welch algo-
rithm [9] to {X}g) to obtain the estimates )\ECH_U.

4. For n = 1,---\N find
B = argmanP(xﬂ)\gH)) (via the forward-
backward or Viterbi algorithms) [9].

5. Fork =1,---, K, let {X}%H_l) = {x}} for all x}
kD = k.

whose
6. Find PU+1) = 2 log P(x7[A{+Y).
7. If d(P(H'l),P(I)) > ¢ (where d(-,-) and ¢ define

some convergence criterion), let / = /4 1 and go
to 3; otherwise, stop.

This algorithm was implemented using similar HMM
structures for all clusters; the model consisted of a fully
connected 5-state structure with single Gaussian full
covariance output densities. After convergence of the
algorithm, we need to establish whether there exists
a dependence between the data labels and the cluster
identities. Our approach to evaluate this is to consider
the outcome of the clustering algorithm in terms of two
multinomial variables: the class of the data sequence x}
(wpn) and the cluster to which it is assigned (c,). The
clustering algorithm may then be viewed as yielding a
data set {wn,c,})_, to which we want to apply a hy-
pothesis test to determine whether the set of labels and
the set of clusters were generated by different multino-
mial distributions or by the same multinomial. More
formally, we would like to know the probability that the
sets @ = {w}, and C = {c},, were generated by the
same distribution:

p(2, Cls)p(s)
p(Q, Cls)p(s) + p(Q2, C|d)p(d)
1
= 1+p£ﬂ,C|d2M (6)

p(Q,C|s) p(s)

p(le,C) =

where the labels s and d indicate same or different dis-
tributions. The main quantity involved in computing
(6) is the ratio of evidence of the data sets under differ-

ent and same distributions ];E%gllg’ a quantity which

may be written in terms of factorized and joint evi-
p(&)p(C)
p(Q,C) -
comes, and let the cluster ¢ take on one of K outcomes.
Define the following counts N;p = Zﬁf:l Suw, j0cn ks
K J .
Nj =3 k=1 Njk and Np =375y Njp for j =1,---, J,
k =1,---,K. Tt can be shown [10] that, under the
assumption of multinomial distributions, the evidence
ratio in (6) is given by

r(Q)p(C) _
p(Q,C)

T(JK D(N;4+K T(Nk+J (1)
F(J\(7+J%() I (F(K) )Hk (F(J+) )Hj,k r(1+(Nj,k)(7)

dence Let the class w take on one of J out-

The quantity in (7) also has an interpretation as the
mutual information between the variables w and ¢ [10].
Equation (6) may be used to determine whether the
clustering procedure has introduced some dependencies
between labels and clusters. Furthermore, it may be
used together with the clustering algorithm above to se-
lect the number of clusters which establishes the largest
dependency between variables.

4.2 Classification

The unsupervised learning procedure described above
may be used to identify time series which form clus-



ters in feature space and may be used as a pream-
ble for building cluster dependent supervised learners
which exploit the “locality” of data sets in regions of
the space. The learners at this classification stage are
therefore trained with only a portion of the categorical
data which corresponds to those time series assigned to
a common cluster. HMMs have been used to implement
the cluster-dependent class-conditional models at this
stage. We applied the same HMM structure and out-
put distribution forms from the unsupervised learning
stage. Using the clustering with the number of clusters
K which maximized the dependency between classes
and clusters, the Baum-Welch algorithm [9] is applied to
learn the HMM parameters. The posterior probability
of the class given an observation is given by

plwlx) =Y p(w,clxe) = Y p(xelw, c)p(clw)p(w) (8)

where the quantity p(c|w) can be estimated from the
output of the clustering. Assuming equal priors on
all classes, and a maximum a posteriori classification
scheme, the following decision rule is then obtained:

W = argmax; p(wi|x;) = argmax, Zp(xﬂw;, e)p(elwr)

(9)
The quantity p(x:|w, ¢) can be efficiently evaluated using
the Viterbi algorithm [9].

5 Results

The speech data of 4 subjects was first divided into a
training and testing set comprising approximately 80%
and 20% of the data set respectively. Unsupervised clus-
tering was first applied to each subject’s training data
with the number of clusters ranging from 2 to 6. We
shall use the following labels to denote the four cate-
gories of data: FF, SF, FS, SS. the first letter denotes
whether the data came from a fast (F) or slow (S) speed
condition; the second indicates the frequency of ques-
tions, every 4 seconds (fast) (F) or every 9 (slow) (S).
Table 1 shows the results of the unsupervised clustering
with the cluster that maximizes (6).

Subject 1 2 3 4
K 4 2 4 6
p(s|2,C) || 0.436 | 0.014 | 0.971 | 0.001

Table 1: Results of Unsupervised Clustering

Table 1 shows that the results are greatly dependent
on the subject. Subject 3 shows a very high correlation
between the clusters and the categories; there is very lit-
tle correlation, however, in the case of subject 4. (One

should note that the results in Table 1 are not biased
by the case K = J since (7) models the interaction of
these two variables.) The dependency between the four
discrete categories of stress we have established and the
output of the unsupervised clustering —as evidenced by
the results of subjects 1 and 3, for instance— suggests
that we may want to retain this distinction between la-
bels to build a supervised system that can discriminate
between them.

The results of such classifications are summarized in
tables 2 and 3 for the training and testing phases for
each subject.

Subject Training Rec. Rates (%)
FF SF FS SS All
1 100 | 97.87 | 100 100 | 99.21
2 100 100 100 100 100
3 97.14 | 94.29 | 70.0 | 85.71 | 89.19
4 100 100 | 94.44 | 88.89 | 97.39

Table 2: Classification Results (Training Set)

Subject Testing Rec. Rates (%)
FF SF FS SS All
1 83.33 | 50.00 | 25.00 0 42.86
2 100 | 69.23 0 40.00 | 69.70
3 100 100 | 83.33 | 100 | 96.15
4 16.67 | 91.67 0 0 36.11

Table 3: Classification Results (Testing Set)

Once again the dependency on the subject is evident
from these results. Subject 4 shows poor generaliza-
tion whereas subject 3 generalizes well. In all cases, the
overall recognition rates for these labels exceed random
classification (25%).

The approach of building a classifier that combines
these local models has the added cost of an increase
in parameter estimation and computational power. It is
therefore desirable to compare its performance with that
of a single classifier. Using the same HMM structure,
we obtained a simple subject dependent classification
scheme without pre-clustering the data. The overall
results for this classifier are shown in Table 4 for the
training and testing set.

Subject 1 2 3 4
Train. Rec. Rate (%) || 98.63 | 94.31 | 86.49 | 99.13
Test. Rec. Rate (%) || 50.00 | 51.52 | 42.31 | 55.56

Table 4: Recognition Rates (No Pre-clustering)

Although higher individual recognition rates were
obtained in some cases with this classification scheme,



it 1s interesting to note that the generalization results
shown in Table 4 are more uniform than those summa-
rized in Table 3. This illustrates how using local models
can boost the performance considerably for some sub-
jects.

6 Conclusions

In this paper we have investigated the use of features
based on subband decompositions and the TEQO for clas-
sification of stress categories in speech produced in the
context of driving at variable speeds while engaged on
mental tasks of variable cognitive load for a set of 4
subjects. To establish whether the resulting discrete
categories constitute meaningful labels in feature space,
we have first used an unsupervised approach to uncover
underlying clusters and then correlated the cluster mem-
bership to the class labels. We have used these results
to build cluster-dependent discriminants to exploit lo-
cal subsets of the data and then combined the results to
yield a decision rule. We report recognition rates that
are greater than random for all subjects.

ACKNOWLEDGMENTS

The authors would like to thank Nissan’s CBR Lab
and Elias Vizas for their help with data collection, and
Thomas Minka for valuable technical discussions and for
suggesting the significance test.

References

[1] Herman J.M. Steeneken and John H.L. Hansen.
Speech under stress conditions: Overview of the
effect on speech production and of system perfor-
mance. In Proceedings ICASSP ’99, volume 4,
pages 2079-2082, 1999.

[2] I.R. Murray, C. Baber, and A.J. South. Towards
a definition and working model of stress and its
effects on speech. Speech Communication, 20:1-12,
November 1996.

[3] Guojun Zhou, John H.L. Hansen, and James
Kaiser. Classification of speech under stress based
on features derived from the nonlinear Teager en-
ergy operator. In Proceedings ICASSP 98, vol-
ume 1, pages 549-552, 1998.

[4] Guojun Zhou, John H.L. Hansen, and James F.
Kaiser. Methods for stress classification: Nonlinear
TEO and linear speech based features. In Proceed-
ings ICASSP ’99, volume 4, pages 2087-2090, 1999.

[5] Firas Jabloun and A. Enis Cetin. The Teager en-
ergy based feature parameters for robust speech

recognition incar noise. In Proceedings ICASSP 99,
volume 1, pages 273-276, 1999.

Ruhi Sarikaya and John N. Gowdy. Wavelet based
analysis of speech under stress. In Southeastcon 97.
FEngineering new New Century. Proceedings IEEF,
pages 92-96, 1997.

Ruhi Sarikaya and John N. Gowdy. Subband based
classification of speech under stress. In Proceedings

ICASSP 98, volume 1, 1998.

Ingrid Daubechies. Ten Lectures on Wavelets.

STAM, 1992.

L. Rabiner and B-H. Juang. Fundamentals of
Speech Recognition, chapter Theory and Implemen-
tation of Hidden Markov Models. Prentice Hall,
1993.

Thomas P. Minka.
Bayesian inference of a multinomial distribution.
http://www.media.mit.edu/~tpminka/
papers/tutorial.html.



