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Abstract

Most everyday scenes have a far greater dynamic
range than can be recorded on a photographic film
or electronic imaging apparatus (whether it be a
digital still camera, video, etc.). However, a set
of pictures, that are identical except for their expo-
sure, collectively show us much more dynamic range
than any single picture. The dark pictures show us
highlight details of the scene that would be washed
out in a “properly exposed” picture, while the light
pictures show us some shadow detail that would
also not appear in a “properly exposed” picture.

We propose a means of combining differently ex-
posed pictures to obtain a single picture of extended
dynamic range, and improved color fidelity. Given
a set of digital pictures, we may produce a single
picture which is, for all practical purposes, ‘undig-
ital’; in the sense that it is a floating point image,
with the kind of dynamic range we are accustomed
to seeing in typical floating point representations,
as opposed to the integer images from which it was
generated.

The method is completely automatic; it requires no
human intervention, and it requires no knowledge
of the response function of the imaging device. It
works reliably with images from a digital camera of
unknown response, or from a scanner with unknown
response, scanning an unknown film type.

1 Introduction
1.1 Advantage of being ‘undigital’

Digital photography allows us to do many things we cannot do
with traditional analog photography. However, being digital
is not desirable in and of itself — it is desirable for what it
facilitates (instant feedback, ability to rapidly transmit high
quality anywhere in the world, ease of manipulation, etc).

Digital imaging imposes certain limitations on the ways
we think about images. Ideally, what we want is not bits,
but, rather, a mathematical or parametric representation of
the continuous underlying intensity variations projected onto
an image plane, represented in a form that allows for easy
transmission, storage, and analysis.

As the spatial resolution of digital images has improved
over the years, we are approaching a level where the image
may be regarded as essentially continuous — it is essentially
free of pizels. Thus high resolution digital images give us
the spatial continuity of analog photography, together with
the ability to view pictures right away, transmit them over
wireless links, analyze them computationally, etc.

However, while there may be so many pixels that we can,
for all practical purposes, assume the image is a function of
two real coordinates, each of these pixels are still represented

as an array of integers that can assume only 256 different
values, for each color channel. So-called 24 bit color, also
known as full color, true color direct visual, etc., is not as
“full” or “true” as these names imply. In particular, these
images are also typically manipulated using 8-bit precision
arithmetic. Any simple manipulations in an image editing
program, such as Photoshop, quickly degrade the quality of
the images, introducing gaps in the histograms that grow with
each successive computation.

The purpose of this paper is to examine the recovery of the
‘true image’, a real-valued quantity of light projected onto
a flat surface. We regard the ‘true image’ as a collection of
analog photometric quantities that might have been mea-
sured with an array of linearized lightmeters having floating-
point precision, and thus, being essentially, for all practical
purposes, ‘undigital’.

Of course, all images that are stored on a computer are
digital. A floating point number is digital. But a double-
precision (64 bit) floating point number is close to analog in
spirit and intent.

With the growing word size of desktop computational hard-
ware, floating point arithmetic is becoming more practical
for large images. The new DEC 3000 (Alpha) computer
has a word size of 64 bits, and can easily handle images as
double precision arrays. Double precision is nothing new.
For years, languages like FORTRAN have supported floating
point arithmetic, used widely by the scientific community, but
floating point calculations are not supported in any of the
popular image manipulation software such as Photoshop or
Live picture. Capturing images that are essentially unlimited
in dynamic range, and, while digitally represented, behave as
analog images, allows us to capture and surpass the benefits
traditionally offered by truly analog image formats like film.

2 What is a camera

We regard an image as a collection of photometric measure-
ments, and a camera as an array of light meters. However,
in traditional imaging, each of these measurements (pixels)
are made with a light meter (sensor element) that has some
unknown nonlinearity followed by a quantization to a mea-
surement having 8-bit precision.

2.1 Dynamic range and amplitude
resolution

Many everyday scenes contain a tremendous dynamic range.
For example, the scene might be a dimly lit room, with a
window in the background; through the window we might
observe a beautiful blue summer sky with puffy white clouds.
Yet a picture that is exposed for the indoor scene will render
the window as a white blob, blooming out into the room,
where we can scarcely discern the shape of the window, let
alone, see beyond it. Of course, if we exposed for the sky



outside, the interior would appear completely black.

Cameras (whether analog or digital) tend to have a very
limited dynamic range. It is possible to extend the dynamic
range by various means. For example, in the case of photo-
graphic emulsion, the film can be made thicker, but there are
tradeoffs (e.g. thicker emulsion results in increased scatter-
ing, which results in decreased spatial resolution). Nyquist
showed how a signal can be reconstructed from a sampling of
finite resolution in the domain (e.g. space or time), but as-
sumed infinite dynamic range. On the other hand, if we have
infinite spatial resolution, but limited dynamic range (even if
we have only 1 bit of image depth), Curtis and Oppenheim [1]
showed that we can also obtain perfect reconstruction. This
tradeoff between image resolution, and image depth is also at
work in a slightly different way in image halftoning.

Before the days of digital image processing, Charles Wyck-
off formulated a multiple layer photographic emulsion [2][3].
The Wyckoff film had three layers that were identical in their
spectral sensitivities (each was roughly equally sensitive to all
wavelengths of light), and differed only in their overall sensi-
tivities to light (e.g. the bottom layer was very slow, with an
ISO rating of 2, while the top layer was very fast with an ISO
rating of 600).

A picture taken on Wyckoff film can both record a dynamic
range of one to a hundred million and capture very subtle dif-
ferences in exposure. Furthermore, the Wyckoff picture has
very good spatial resolution, and thus appears to overcome
the resolution/depth tradeoff, by using different color dyes in
each layer, which have a specular density as opposed the dif-
fuse density of silver. Wyckoff printed his greyscale pictures
on color paper, so the fast (yellow) layer would print blue,
the medium (magenta) layer would print green, and the slow
(cyan) layer would print red. His result was a pseudo-color
image similar to those used now in data visualization sys-
tems to display floating point arrays on a computer screen of
limited dynamic range.

Wyckoff’s most well-known pictures are perhaps his motion
pictures of nuclear explosions — one could clearly see the faint
glow of a bomb just before it exploded (which would appear
as blue, since it only exposed the fast top layer), as well as
the details in the highlights of the explosion (which appeared
white since they exposed all 3 layers — the details discernable
primarily on account of the slow bottom layer).

2.2 Combining multiple pictures of the
same scene

The idea of computationally combining differently exposed
pictures of the same scene to obtain extended dynamic range
has been recently proposed [4], where the images were as-
sumed to have been taken from roughly the same position
in space, with possibly different camera orientations (pan,
tilt, rotation about optical axis), and different zoom settings.
In this paper we describe, in further detail, the computa-
tional means of combining differently exposed pictures into a
floating-point image array, and assume a simpler case, namely
that all pictures are taken from a camera at a fixed location
in space and a fixed orientation, with a fixed focal length lens.
This simpler case corresponds to pictures that differ only in
exposure.

We refer to a collection of pictures that differ only in expo-
sure as a Wyckoff set, in honor of Charles Wyckoff, who was
the first to exploit such a set of pictures collectively. Pho-
tographers, through a procedure called exposure bracketing
(trying a variety of exposure settings and later selecting the
one exposure that they most prefer) also produce Wyckoff

Figure 1: The Mann family standing outside an old building with the
camera inside. Here the exposure was selected so that the people would
show up nicely.

sets but generally with the intent of later merely selecting the
best image from the set, without exploiting the full potential
value of using the images collectively.

3 Exposure bracketing of digital images

Whenever the dynamic range of the scene exceeds the range of
the recording medium (which is almost always) photographers
tend to expose for areas of interest in the scene. For example,
a scene containing people is usually exposed to show the most
detail in them (Fig. 1) at the expense of details elsewhere
in the scene. Additionally, in our case, a picture was taken
immediately afterward (Fig. 2), with four times the exposure
time, so that the surrounding contextual details of the scene
would show up nicely.

Ideally, only one picture would be needed to capture the
entire dynamic range of the scene, and we wouldn’t even
need to worry about whether the picture was overexposed
or underexposed because we could lighten or darken it later
on, by simply using the appropriate ‘lookup operator’. By
‘lookup operator’, we mean any spatially invariant nonlinear-
ity: g(z,y) = g(f(z,y)). A ‘lookup operator’ is the continu-
ous analog of a lookup table. Gamma correction is an example
of a ‘lookup operator’.

However, due to various noise sources, such as quantization
noise, a ‘lookup operator’ will only be able to compensate
for a very limited amount of overexposure or underexposure.
For example, we will never recover the detail in the faces of
the people from Fig. 2. The increased exposure has caused
this information to be lost by the combined effect of satu-
ration and noise. Similarly, nothing can be done to recover
the shadow details in the darker portions of Fig. 1, because
these areas have pixel values that are uniformly zero. Even
in slightly brighter areas, where there is variation in the pix-
els, this variation is subject to extreme quantization noise.
For example, in dark areas where the pixel values fluctuate
between zero and one, there is only one bit of precision. A
camera with a small number of bits of depth (such as a one-
bit camera), but which has very high spatial resolution, may
be used to capture a continuous tone image [1]. Indeed, a stat
camera, used in a photo mechanical transfer (PMT) machine,
is able to capture images that appear to be continuous-tone
(due to the halftoning screen), even though the film can only
record two distinct levels. This is possible because the film
has essentially unlimited spatial resolution, and is recording
through a screen of much lower (e.g. 85dpi) spatial resolution.

However, in most digital photography and video applica-
tions, spatial resolution is much lower than we would like. We



Figure 2: The exposure was increased by a factor of k& = 4, compared
to Fig. 1; as a result, the interior of the building is nicely visible.

do not have the luxury of essentially infinite spatial resolution
that PMT systems have, and so we are not at liberty to trade
spatial resolution for improved dynamic range.

Therefore, we propose the use of exposure bracketing as
an alternative, whereby we make the tradeoff along the time
axis, exchanging reduced frame-rate for improved dynamic
range, rather than reduced spatial resolution for improved
dynamic range. In particular, often a still image is all that is
desired from a video camera, and in many other digital video
applications, all that is needed is a few frames per second,
from a camera capable of producing 30 frames per second or
more.

4 Self-Calibrating Camera

The numerical quantity appearing at a pixel in the image is
seldom linearly related! to the quantity of light falling on the
corresponding sensor element. In the case of an image scanned
from film, the density of the film varies nonlinearly with the
quantity of light to which it is exposed. Furthermore, the
scanner will most likely introduce a further unknown nonlin-
earity.

We propose a simple algorithm for finding the pointwise
nonlinearity of the entire process, f, that maps the light ¢
projected on a point in the image plane to the pointwise value
in the picture, f(q), up to a constant scale factor. We ignore,
until Section 4.1, the fact that each pixel can only assume a
finite number of values, the fact that there are a finite number
of pixels in the image, and the effects of image noise:

1. Select a relatively dark pixel from image a, and observe
both its location, (zo,yo), and its numerical value, fo.
We do not know the actual quantity of light that gave rise
to fo, but we will call this unknown quantity ¢o. Since
fo is the result of some unknown mapping, f, applied to
the unknown quantity of light, ¢o, we denote a(zo,yo)

by f(qo).

2. Locate the corresponding pixel in image b, namely
b(zo,y0). We know that k times as much light gave rise
to b(xo, yo) as to a(zo, yo). Therefore b(zo, yo) = f(kqo).
For convenience, we denote b(zo,yo) by f(¢1), so that
f(q1) = f(kgo). Now search around in image a for a
pixel that has the numerical value f(q1), and make a
note of the coordinates of the found pixel. Call these
coordinates (z1,y1), so that we have a(z1,y1) = f(q1)-

'In fact, quite often, photographers desire a nonlinear re-
lationship: the nonlinearities tend to make the image look

better when printed on media that have limited dynamic
range.
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Figure 3: Procedure for finding the pointwise nonlinearity of an image
sensor from two pictures differing only in their exposures. (RANGE-
RANGE PLOT) Plot of pixel values in one image against corresponding
pixel values in the other, which we call the ‘range-range’ plot. (RE-
SPONSE CURVE) Points on the response curve, found from only the
two pictures, without any knowledge about the characteristics of the
image sensor. If we use a logarithmic exposure scale (as most photog-
raphers do) then the samples fall uniformly on the log(¢/qp ) axis.

3. Look at the same coordinates in image b and observe the
numerical quantity b(z1,y1). We know that k times as
much light fell on b(z1,y1) as did on a(z1,y1). Therefore
b(z1,y1) = f(kq1). For convenience, we denote b(z1,y1)
by f(g2). So far we have that f(¢2) = f(kq1) = f(k%q0).
Now search around in image a for a pixel that has the nu-
merical value f(g2) and note these coordinates (z2,¥2).

4. Continuing in this fashion, we obtain the nonlinearity of
the image sensor at the points f(go), f(kgo), f(k*q0), ...
f(k"q0).

Now we can construct points on a plot of f(g¢) as a function
of ¢, where ¢ is the quantity of light measured in arbitrary
(reference) units. We illustrate this process diagrammatically
(Fig 3(a)), where we have introduced a plot of the numeri-
cal values in the first image, a« = f(¢) against the numerical
values in the second image, b = f(kq), which we call the
‘range-range’ plot, as the axes are both the range of f, with
a constant domain ratio, k. Once the camera is calibrated,
we may use the calibration curve to combine sets of pictures
like the ones in Fig. 1 and 2. The pictures that are used
to calibrate the camera need not be the same ones used to
make the composite. In fact, had we used a smaller value
for k to calibrate the camera (e.g. 1.4 or 2 instead of 4),
we would have obtained more sample points on the response
curve (Fig 3(b)).

In general, estimating a function, f(q), from a graph of f(q)
versus f(kg), is a difficult problem. However, we can place
certain restrictions on f. For example, we suppose that f is
semi-monotonic? (increases or remains constant with increas-
ing ¢). Since the response curve is semi-monotonic, so is the
plot depicted in Fig 3(a). We can also impose that f(0) =0
by taking a picture with the lens cap on, and subtracting the
resulting pixel value from each of the two (or more) images.
This step will insure that the plot of Fig 3(a) passes through
the origin.

We may be willing to place even stronger restrictions on
the response curve. For example, a commonly used empirical

2The only practical situation that would likely violate this
assumption, is where a negative film is being used, the sun is
in the picture, and the sun’s rays are concentrated on the film
for a sufficiently long time to burn a hole through a negative
film. The result is a print where the brightest object in the
scene (the sun) appears black.
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Figure 4: Cross histogram of the images in Figs. 1 and 2. The cross-
histogram of two images is itself an image. Since the two images have
a depth of 8 bits, the cross histogram is a 256 X 256 image regardless
of the sizes of the two images from which it is obtained. The bin count
at the origin (lower left corner) indicates how many pixels were black
(had a value of zero) at the same location in both images. (a) Cross
histogram displayed as an image. Darker areas correspond to greater
bin counts. (b) All non-empty bins are shown as black. Ideally, there
should only be a slender “staircased” curve of non empty bins, but due
to noise in the images, the curve fattens.

law for film is f(¢) = o+ B¢". This gives rise to the canonical
D log E (density versus log exposure) curve much of which is
linear. The Dmin (minimum density), o, would be subtracted
off as suggested, using a picture with the lens cap on, and the
(a,b) plot would take the form b = k”a, from which we could
find the film’s contrast parameter v by applying regression to
the points known on the range-range plot.

4.1 Quantization and other noise

In practice, the pixel values are quantized, so that the range-
range plot is really a staircase function. Tt is still semi-
monotonic, since it is a quantized version of a continuous
semi-monotonic function.

In addition to quantization effects, we also have noise,
which may be due to a variety of causes, such as thermal
noise in the image sensor, grain in the film, slight misregis-
tration of the images, or slight changes in camera position,
scene content, and lighting. We consider a ‘joint histogram’
of the two images (Fig. 4(a)), which is the discrete equivalent
of the ‘range-range’ plot of Fig 3. Tt is a 256 by 256 array
since each pixel of the two images can assume 256 distinct
values. Due to noise, we see a fat ridge, rather than a slen-
der “staircase”. Ideally there should be no points off of the
staircase, defined by quantizing the range-range plot, but in
practice we find a considerable number of such non-empty
bins (Fig. 4(b)).

5 Combining images of different

exposure

At this point we have found the response curve (by fitting to
the data in the range-range plot, as in Fig 4), and can shift
the response curve to the left or right to get the curves of the
two or more exposures (Fig. 5(a)). In the shadow areas (areas
of low exposure, F) the same quantity of light in the scene
has had a more pronounced effect on the dashed-exposure, so
that the shadow detail in the scene will still be on a portion of
the dashed line that is relatively steep. The highlight detail
will saturate this exposure, but not the dotted-exposure.

In general, for parts of the film that are exposed in the
extremes (greatly overexposed or greatly underexposed), de-
tail is lost — we can no longer distinguish small changes in
light level since the resulting changes in film density are so
small that they fall below the noise floor (e.g. we are oper-
ating on the flat parts of Fig 5). On the other hand, steep
portions of the response curves correspond to detail that can
be more accurately recovered, and are thus desirable operat-
ing points. In these regions, small changes in light will cause
large changes in the measured value of the response function,
and even if the measurements are highly quantized (e.g. only
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Figure 5: Response curves of the Wyckoff set (note the log scale as
opposed to the scale of Fig 3 (RESPONSE CURVE) which was linear).
(a) Response curves corresponding to two different exposures, depicted
as though they were taken on two different films. The dashed line may
be thought of as either a longer exposure or the faster layer of a 2-
layer Wyckoff film, while the dotted line may be regarded as a shorter
exposure or the slow layer of a 2-layer Wyckoff film. (b) “Certainty
functions” calculated by differentiating the two response curves. (c)
Hypothetical curves re-aligned as they will be when the images are
later combined. The response of the ideal composite is indicated by
the thin solid line. Using more exposure bracketing (or more layers on
a Wyckoff film), we can extend this response indefinitely.

Figure 6: ‘Crossover image’ corresponding to the two pictures in Figs. 1
and 2. Black denotes pixel locations where Fig. 1 is the more “certain”
of the two images, and thus where Fig. 1 should contribute to the
composite. White denotes pixel locations where Fig. 2 is the more
“certain” of the two images, and thus where it should contribute to the
composite. In practice, we take a weighted sum of the images rather
than the abrupt switchover depicted in this figure.

made with 8 bit precision), small differences in the measured
quantities will remain discernable.

Thus we are tempted to plot the derivatives of these hy-
pothetical response curves (Fig. 5(c)), which we call the cer-
tainty functions.

At first glance, one might be tempted to make a composite
from two or more differently exposed pictures by manually
combining the light regions from the darker pictures and the
dark regions from the lighter pictures (e.g. manually selecting
the middle of Fig. 1 and pasting on top of Fig. 2). However, we
wish to have the algorithm automatically combine the images.
Furthermore, the boundary (Fig. 6) between light regions and
dark regions is, in general, not a smooth shape, and would be
difficult to trace out by hand. Pasting this irregular region
of Fig. 1 into Fig. 2, amounts to choosing, at each point of
the composite, the source image that has the higher certainty
of the two. However, abrupt changes resulting from suddenly
switching from one image to another ocasionally introduce
unpleasant artifacts, so instead, we compute a weighted aver-
age. Every pixel of the composite, whether shadow or high-
light, or in the transition region, is drawn from all of the input
images, by weighting based on the certainty functions. This
provides a gradual transition between the images, where the



Figure 7: Wyckoff composite, derived from Fig. 1 and Fig. 2, reduced
in contrast and then quantized to 8 bit image depth.

shadow detail comes primarily from the lighter image, and
the highlight detail comes primarily from the darker image.

The extended-response image array from the two pictures
of Figs. 1 and 2 is a floating point array which has more than
256 distinct values, and therefore cannot be displayed on a
conventional 8-bit display device.

6 Dynamic range; ‘dynamic domain’

Tekalp, Ozkan, and Sezan [5], Trani and Peleg [6], and Mann
and Picard [7] have proposed methods of combining multiple
pictures that are identical in exposure, but differ in camera
position. The result is increased spatial resolution. When
one of these images is too big to fit on the screen, we look
at it through a small movable viewport, scrolling around and
exploring one part of the ‘image domain’ at a time.

In this paper, the composite image is a floating point array,
and is therefore too deep for conventional screen depths of 24
bits (8 bits for each color channel), so we constructed a slider
control to allow the user to interactively look at only part of
the ‘image range’ at a time. The user slides the control back
and forth depending on the area of interest in the composite
image. This control is to screen range as the scrolling window
is to screen domain — showing the vast tonal range one piece
at a time. Of course we were able to obtain the underexposed
view much like Fig 1, by sliding the control left, and the
overexposed view much like Fig 2 by sliding the control right.

When an image is too big to fit on the screen, one can also
subsample its domain to make it fit on the screen. Analo-
gously, we applied the appropriate range-subsampling (quan-
tization to 8 bits) to our floating-point composite image for
screen display, or print (Fig 7). Before quantization, we ap-
plied a nonlinearity which restored the appearance of the im-
age to the familiar tonal scale to which photographers are
accustomed, and we added the appropriate amount of noise
(dither)®. Tt is worth mentioning that the final nonlinearity
before quantization selects the tonal range of interest. We
can regard its derivative (the ‘certainty function’) as depict-
ing the ‘Wyckoff spectrum’ (which regions of greyvalue are
emphasized and by how much) analogous to a conventional
bandpass filter which selects the frequencies of interest. The
elements of a Wyckoff set, having equally spaced certainty
functions of identical shape, are analogous to a bank of con-
stant @ filters.

*The dither did not have a perceivable effect on an 8 bit
image, but when reducing a Wyckoff composite to 5 bits or
less, the dither made a noticable improvement.

If all that is desired is a single print, why not just try to
formulate a super-low-contrast film or image sensor? The su-
periority of the Wyckoff composite lies in the ability to control
the process of going to the low contrast medium. For exam-
ple, we might apply a homomorphic [8] filtering operation to
the final composite, which would bring out improved details
at high spatial frequencies, while reducing the unimportant
overall changes in density at low spatial frequencies.

7  Wyckoff analysis and synthesis
filterbanks

We can regard the Wyckoff film (or exposure bracketing) as
performing an analysis by decomposing the light falling on
the sensor into its “Wyckoff layers’. The proposed algorithm
provides the synthesis to reconstruct a floating point image
array with the dynamic range of the original light falling on
the image plane. This analysis-synthesisconcept is illustrated
in Fig 8.

The analysis-synthesis concept suggests the possibility of
using the Wyckoff layer decomposition as a “Wyckoff filter”
that could, treat the shadows, midtones, and highlights of
an image differently. For example, we might wish to sharpen
the highlights of an image without affecting the midtones and
shadows.

The Wyckoff filter provides a new kind of filtering — ‘am-
plitude domain’ filtering — as opposed to the classic Fourier
domain, spatial domain, temporal domain, and spatiotempo-
ral filters. We envision a generalized Nyquist-like theory for
reconstruction from ‘amplitude samples’, to augment classic
sampling theory.

8 ‘Lightspace’
The concept presented in this paper is part of a larger frame-
work called ‘lightspace’[9], which is a description of the way
a scene responds to light. ‘Lightspace’ is the space of all
possible photometric measurements taken for each possible
photometric excitation.

Regarding an image of size M x N pixels as a point or vector
in RMY | allows us to consider each of a set of differently
exposed images, prior to nonlinearities and quantization, as
colinear vectors in IRMY,

Furthermore, if we obtain multiple pictures of the same
scene differing only in lighting, they span a subspace of
RMY which we call the ‘lightvector subspace’. From any
set of ‘lightvectors’ (pictures of a scene taken with particular
lighting) that span a particular ‘lightvector subspace’ we can
synthesize pictures taken with any combination of the light
sources.

To the extent that a multichannel image (such as color,
having three channels: R,G,B), having L channels is a collec-
tion of I vectors, then for each of a set of multiple channel
pictures differing only in lighting, we can associate L vectors.
We call the set of L vectors a ‘lightmodule’.

It has been shown[10] that a set of ‘lightmodules’ (which
we call a ‘lightmodule subspace’) also spans a useful space.
For example, a set of color pictures of a scene differing only
in lighting, taken with white lights at various places in the
scene, was used to synthesize the result of having taken a
picture with colored lights at these same locations.

9 Summary
We have presented a means of combining multiple digital
images that differ only in their exposure, to arrive at an
extended-response floating point image array. The method
proceeds as follows:

1. From the set of pictures (or from another set of pictures
taken with the same camera) determine the camera’s
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pointwise response function using the “self-calibration”
method of Section 4.

2. Linearize the images (undo the nonlinear response of
each), if desired, or map the response curves onto one
desired final response curve.

3. Compute the certainty function by differentiating the re-
sponse function. The certainty function of each image is
found by appropriately shifting this one certainty func-
tion along the exposure axis.

4. Compute the weighted sum of these images, weighting
by the certainty functions.

The composite may be explored interactively or contrast-
reduced and quantized, for a conventional display device.
Furthermore, we can regard the Wyckoff film (or exposure
bracketing) as performing an analysis by decomposing the
light falling on the sensor into its ‘Wyckoff layers’. The pro-
posed algorithm provides the synthesisto reconstruct a float-
ing point image array with the dynamic range of the original
light falling on the image plane. This suggests the possi-
bility of a ‘Wyckoff filter’ that could, for example, blur the
highlights of an image while sharpening the midtones and
shadows. Wyckoff filters work in the ‘amplitude domain’, in
contrast to Fourier filters which work in the frequency do-
main, or spatio-temporal filters which work in the space and
time domains.
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