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Abstract

In this paper we develop a method for the simultaneous restoration and halftoning of scanned fingerprint images
using a novel non-linear dynamical system, called the “M-lattice system”. This system is rooted in the reaction-
diffusion model, first proposed by Turing in 1952 to explain the formation of animal patterns such as zebra stripes and
leopard spots. A typical reaction-diffusion system is a set of heat equations, coupled by non-linear reaction terms.
The new M-lattice system is closely related to the analog Hopfield network and the cellular neural network, but has
more flexibility in how its variables interact. Furthermore, the state variables of an M-lattice system are guaranteed
to be bounded, which is not the case with many reaction-diffusion systems. Due to this large-signal boundedness, the
M -lattice system possesses desirable numerical properties that make it useful in engineering applications. Our new
method for enhancing fingerprints explores the ability of the M-lattice system to form oriented spatial patterns (like
reaction-diffusion systems), while producing binary outputs (like analog feedback neural networks). We compare the
outputs of two approaches used to enhance the same original fingerprint: the new M-lattice system and adaptive
thresholding, a common halftoning method employed in traditional fingerprint classification systems. The results
indicate that the fingerprints synthesized by the M-lattice system retain and emphasize significantly more of the
relevant image detail than do the fingerprints synthesized by the standard algorithm.
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1 Introduction

The present research has originated in the investiga-
tion of the usefulness of reaction-diffusion systems for
modeling natural textures. A reaction-diffusion system
is a set of heat equations, coupled by, typically non-
linear, reaction terms. The reaction-diffusion model
was first proposed by Turing in 1952 in order to ex-
plain coating mammalian patterns, such as, for exam-
ple, zebra stripes, leopard spots, efc., and, until recently,
reaction-diffusion systems have been researched predom-
inantly by mathematical biologists working on theories
of natural pattern formation and by chemists working
on modeling the dynamics of complex chemical reac-
tions [1], [2), (3], (4, [5), 6], [7), (8, [9], [10], [11],
However, the past three years have seen a significant
surge in interest in reaction-diffusion systems, primarily
for exploiting them in the areas of computer graphics
and 1mage processing. The graphics community’s inter-
est 1n reaction-diffusion systems stems from their ability
to model and synthesize directly on a three-dimensional
object a wide class of natural textures [12], [13]. In
the realm of image processing, reaction-diffusion sys-
tems have shown promise for texture segmentation and
classification [14].

In order to possess pattern formation properties, a
reaction-diffusion system must exhibit local instability
to small non-homogeneous perturbations. In addition,
practical considerations dictate that the system’s state
variables should be bounded in the large-signal regime.
A major difficulty associated with the reaction-diffusion
system paradigm in its standard form 1s that the system
possesses this property only for a restricted class of non-
linear reaction functions. This drawback narrows the
scope of the model’s engineering applications.

A common approach aimed at preventing numeri-
cal overflow from plaguing the simulations of reaction-
diffusion systems on the digital computer has been to
clip the magnitudes of the state variables by adding
an “if” statement to the numerical method (e.g., For-
ward Fuler) used for solving the system of differential
equations [13]. For some reaction-diffusion systems, this
technique eventually manages to stop the state variables
from changing between successive time steps. However,
it does not guarantee that the system will reach equi-
librium, even if the values of the state variables are ar-
tificially kept from changing. Moreover, controlling a
system of differential equations from within the numer-
ical method destroys the mathematical integrity of the
original dynamical system.

The main contribution of this paper is the formula-
tion of the clipped M-lattice system as a more prac-
tical and flexible extension of the reaction-diffusion
model [15], [16]. By using a warping function to fa-
cilitate boundedness, this new system allows more flex-
ible non-linear interactions than the reaction-diffusion

system. Furthermore, in contrast with the original
reaction-diffusion system, convergence of the clipped M-
lattice system to a fixed point has been observed in com-
puter simulation for a large variety of non-linear reac-
tion functions. In order to account for some of these
observations, we have proven the total stability of a
subclass of the clipped M-lattice system [17]. The M-
lattice system 1is closely related to the analog Hopfield
network [18], [19], [20], [21] and the cellular neural net-
work [22], [23], [24], [25], but has more flexibility in how
its variables interact. The model’s ability to inherit the
pattern-formation aspects of reaction-diffusion systems
is illustrated in an application to the restoration and
enhancement of scanned fingerprint images.

The rest of this document is organized as follows. Sec-
tion 2 summarizes the basic properties of the reaction-
diffusion model. Then Section 3 reviews the M-lattice
system. Following that, Section 4 derives the pattern-
formation properties of one type of the clipped M-lattice
system and applies it to the pre-processing of finger-
prints. Finally, Section 5 summarizes the report.

2 Reaction-Diffusion System

Turing’s paper titled “The Chemical Basis of Morpho-
genesis” was a first attempt to provide a scientific expla-
nation for the patterns of pigmentation in animals [1].
Many mammals have prominent coat markings. For
example, zebras have stripes, giraffes have contoured
patches, leopards and cheetahs have spots; the furs of
many dogs and cats also display various forms of stripes
and patches of different color. In addition, many tropi-
cal fish exhibit colorful patterns of spots and stripes.

Turing proposed to model nature’s behavior by an
interaction of chemicals that he called “morphogens”.
The simplest model uses two morphogens: the “activa-
tor” and the “inhibitor”. The morphogens themselves
are produced by chemical reactions among particular
enzymes 1n every cell of the animal’s skin during the
animal’s embryonic stages [11].

According to this model, the two morphogens react
with each other; however, the model consisting of reac-
tion alone cannot account for the tremendous variety of
coating patterns observed in animals. Since there is no
inter-cellular flow of morphogens in the model, every cell
acts as an independent autonomous system, producing
the final morphogen concentrations based only on ran-
dom 1initial concentrations. Therefore, cells end up in
stable states that have no correlation or spatial struc-
ture, unlike the majority of patterns occurring in nature.
In order to supplement the model with the needed trans-
port mechanism, Turing encorporated a diffusion term
into the system of equations.

As a case study, Turing modeled the tentacle forma-
tion in hydra (a small tubular fresh-water polyp) with



a 1-D reaction-diffusion system:
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where ¢q(z), called the “evocator”, is a waveform of small
random perturbations, and D4 and Dy are the diffusion
rates of the activator and the inhibitor morphogens, re-
spectively.

To gain a qualitative understanding of the operation
of a two-morphogen reaction-diffusion system, consider
two morphogens, the activator and the inhibitor, each
reacting with itself and the other. While the reactions
influence local concentrations of the two morphogens,
the diffusion transports the morphogens from cell to
cell. Suppose the activator 1s auto-catalytic but diffuses
slowly. In other words, its concentration increases in
proportion to the amount already present, but its diffu-
sion rate is low compared to that of the inhibitor. Thus
the activator and the inhibitor create two opposing ten-
dencies. On one hand, the activator concentration grows
at a high rate locally, but does not spread fast enough
to replace the inhibitor everywhere. On the other hand,
the inhibitor consumes the activator at a low rate locally,
but, because of its high diffusion constant, the inhibitor
is delivered faster to remote sites, keeping the activa-
tor concentration finite everywhere. The competition
between these two tendencies causes the concentration
profiles of the activator and the inhibitor to settle into
patterns of peaks and valleys.

We now summarize Turing’s analysis. The cells of
hydra are assumed to be equally spaced and comprise a
periodic 1-D lattice with the period of N, cells. Using
a popular discretization of the second derivative [26],
turns (1) into:
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Linearization around a fixed point is commonly the
first step in analyzing a non-linear dynamical sys-
tem. The “small-signal” reaction-diffusion system cor-

responding to (2) is:
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where the subscript denotes a small deviation from

the equilibrium value:

1/)A,eq(nxa t= tO) = 1/)I,€q(nl‘a t= tO) = 4.

The combination of discretization and linearization
has turned spatial derivatives into spatial convolutions,
making the variables corresponding to different spatial
indices in (3) intermixed. Variables are separated in a
standard way by applying the Discrete Fourier Trans-
form (DFT), turning convolutions into multiplications:
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The equations in (4) are a special case of the two-
morphogen linear reaction-diffusion system of the form:
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where the diffusion rates, D4 and Dy, are restricted to
be non-negative. The constants r,,,m, are called the
marginal reaction rates.

Depending on the eigenvalues and the initial condi-
tions, the system (5) can exhibit six types of solutions:

e A (ky) and Az(k;) are a complex pair with a nega-
tive real part = decaying traveling waves;

o Ai(ky) and Aa(ky) are a complex pair with a posi-
tive real part = growing traveling waves;



e two identical decaying traveling waves moving
in the opposite directions =— decaying standing
waves;

e two identical growing traveling waves moving in the
opposite directions = growing standing waves;

e both Ai(k;) and As(k;) are real and negative —
decaying spatially-stationary waves; and

o cither A(ky) is real and positive — growing
spatially-stationary waves.

The solution is a non-stationary spatial wave, unless
A(ky) is real. Both traveling wave and standing wave
solutions are called non-stationary, because the ampli-
tudes of such waves undergo sign changes. Table 1 sum-
marizes all the possibilities for a 2 x 2 reaction-diffusion
system.

Traveling waves cannot model an animal coat texture,
because they do not produce a constant spatial pattern.
Also, if the real part of A(k,) is negative, then the spa-
tial harmonics decay to zero. Thus, for explaining the
formation of natural patterns, such as zebra stripes and
leopard spots, it was the last mode that received a lot
of attention. The other modes of reaction-diffusion sys-
tems have also been used, for instance, in modeling the
behavior of oscillating chemical reactions [9], [11].

The only mode of the system in (5) that is capable
of producing stationary spatial waves is the one corre-
sponding to A(ky) € R, A(kz) > 0 for some range of
k. Since the amplitude of every k, that belongs to this
band of spatial frequencies grows as a function of time,
the system becomes unstable for that particular spatial
frequency. Therefore, in order to produce stationary
spatial waves, the system must be unstable for at least
one spatial frequency. The harmonic k, = 0 is excluded
from the band of unstable wave numbers by definition so
as to maintain stable equilibrium levels in the absence
of diffusion. Thus, the system should be unaffected by
homogeneous perturbations.

Turing has determined the conditions on D4 and Dy,
under which the system in (5) is stable to homoge-
neous (i.e., DC) perturbations and unstable to non-
homogeneous (i.e., AC) perturbations at least for one
value of k, [1]. Turing gave the name “chemical wave-
length” to this dominant spatial frequency, characteris-
tic of (1).

Intuitively, one often thinks of diffusion as a phe-
nomenon that smoothes temperature and concentration
gradients and brings stability. Counter to common in-
tuition, however, reaction-diffusion systems are purpose-
fully set up in such a way that diffusion is necessary in
order to cause instability. A possible intuitive explana-
tion for the “diffusional” | or “Turing”, instability can be
stated as follows. Without the diffusion, there is only
enough morphogen to sustain a pilot reaction, and then
the system is stable. However, when the morphogen con-
centration i1s non-homogeneous, the diffusion “squirts in

some extra morphogen” , which “fuels” the reaction. The
morphogen concentration explodes, thereby driving the
system unstable.

As the amplitude of the dominant mode grows, the
linear analysis ceases to be valid. However, Turing
argues that the linear behavior predicts the overall
non-linear behavior reasonably well. Subsequent com-
puter simulations have confirmed this for many reaction-
diffusion systems [2], [3], [9], [11], [17].

The present research emphasizes the use of reaction-
diffusion models for synthesis and analysis of textures,
regardless of whether or not every detail of the model
considered 1is biologically plausible. Thus it has been
shown that when discretized diffusion is replaced by a
general FIR filter, even single-morphogen systems be-
come capable of pattern formation [17]. This capabil-
ity will be utilized in applying the model to fingerprint
restoration, which is described in Section 4.

3 M-Lattice System

A vast variety of non-linear reaction functions do not
only facilitate local instabilities, essential for synthe-
sizing textures, but also cause undesirable large-signal
growth of state variables without bound. In order
to alleviate this problem, while retaining the pattern-
formation capabilities, we propose to study the reaction-
diffusion system on a spatial grid and allow a general
FIR filter in place of the discretized diffusion opera-
tor. By controlling the growth of the non-linear terms
with a sigmoidal warping function, we arrive at the M-
lattice system. As we show in Section 4, using a warp-
ing function does not destroy the small-signal behavior
of the model, which 1s responsible for the formation of
spatial patterns. Moreover, one can design the system
such that the morphogen concentrations are bounded in
the large-signal regime. The origin of the name “M-
lattice system” comes from its roots in the reaction-
diffusion paradigm, where M stands for the number of
morphogens, or layers, in the lattice.

3.1 General Definition

Let ¢;(t) € R be a state variable as a function of
time at each lattice point ¢, where i =1, ..., N. Let
X:i(t) be an output variable, obtained from ;(t) via
xi(t) = g(¢:(1)). The “warping” function, g(u), an
example of which appears in Figure 1, must be of a
saturating type so as to limit the range of the out-
put variables. Construct 1/7(15) and ¥(¢) by concate-
nating ¢1(¢), ..., ¥n(t) and x1(¢), ..., xn(¢), respec-
tively into column vectors.

Definition 3.1 Suppose that the given functions,
fi(X(@)), are continuous, differentiable, and bounded.
Let the matrizx A be real with all eigenvalues having
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Figure 1: Plots of a sigmoidal warping function for
three different temperatures.

negative real parts: A € RV*N A = [ay], and
Vi R(N[A]) < 0. Define f()Z'(t)) by concatenating
[X@), .., In(X(@)) into a column vector. Then the
M -lattice system 1is a possibly non-linear autonomous

dynamical system, described by the following equation:

O — Adw) + ).

dy

6

T (6)

A crucial property of the M-lattice system is that its
state variables are bounded [17].

3.2 Clipped M-Lattice System

Consider the M-lattice system, (6), in which
def

f()Z(t)) = 6;@(;2’(15)) and g(u) is the following “clip-

ping” function:

1

du 0, |ul>T. (7)
1 U U

o) = 5(lFr|-[F-1)) Ten

This function is plotted in Figure 2.

Definition 3.2 Suppose  that the  given  func-
tion, ®((t)), is continuous, twice-differentiable, and
bounded. Let the matriz A be real, symmetric, and
negative-definite: A € RVN A = [a;;], A = AT, and
Vi A [A] < 0. Then the clipped M -lattice system is the
following possibly non-linear dynamical system:

dij(t)

dt

-

= AU() + V(D). (8)

g(w)

05+

Clipping Function

Figure 2: Plots of the clipping warping function for
three different temperatures.

As part of the analysis, we have shown that a subclass
of the clipped M-lattice system possesses total stability,
which is manifested in asymptotic convergence, regard-
less of the initial conditions [17].

Proposition 3.1 Consider a special case of the M-
lattice system, (8), in which A = Diag {a1, ..., an},
Vi a; < 0. Any solution trajectory of this diagonal-state
clipped M -lattice system converges to a finite asymptot-
ically stable fized point, 1/7 eRN (or Y€1, 1]V).

Thus far, no proof of total stability exists for the more
general system, (8). However, fixed points of the form
xe{-1, 1}N are asymptotically stable [17]. In all ex-
periments of the type that we discuss below, the general
clipped M-lattice system exhibited convergence in com-
puter simulation.

3.3 Comparison to Other Models

Several key aspects of the general M-lattice sys-
tem, (6), with various saturating warping functions are
unique when compared to other closely related models.
Unlike the analog Hopfield network or the cellular neu-
ral network, the M-lattice system allows the A matrix
to have off-diagonal elements. In addition, the interac-
tions among the output variables, x;(¢) can in princi-
ple be prescribed by a very general non-linear function,
f()Z'(t)) This flexibility enables the M-lattice system
to capture the behavior of a wider variety of physical
systems.

If A is a diagonal matrix with negative elements on
the main diagonal and ®(¥(¢)) is a multilinear poly-
nomial (i.e., a polynomial whose independent variables



have the powers zero or one [21]), then the M-lattice
system with a sigmoidal warping function becomes the
analog Hopfield network. For binary outputs, the M-
lattice system, similarly to the analog Hopfield network,
is capable of optimization in the sense of the Hamming
distance of one [21], [17].

If A is a diagonal matrix with the same negative el-
ement on the main diagonal and 62@()2(15)) is a circu-
lant (or block-circulant) symmetric matrix, which rep-
resents the convolution with a linear shift-invariant FIR,
filter, then the clipped M-lattice system, (8), becomes
the original cellular neural network [22], [23], [24], [25].

4 Restoration And Halftoning
Of Fingerprints Using M-
Lattice System

A typical fingerprint identification system contains a
pre-processing step, which involves the halftoning of the
original scanned and finely quantized fingerprint im-
age. The essential steps comprising the identification
sequence are: determining the type of the fingerprint,
counting of ridges and bifurcations, and locating the
core. A binary fingerprint image is more amenable for
these tasks than a gray-scale fingerprint image [27].

We propose a pre-processing scheme that not only
halftones the original fingerprint image, but also re-
moves artifacts that can hinder the identification pro-
cess. The method uses the ability of the clipped M-
lattice system to excite locally-growing stationary spa-
tial waves, which are the signature of reaction-diffusion
systems, as well as to produce equilibrium images that
have binary-valued pixels.

The motivation for using the reaction-diffusion aspect
of the clipped M-lattice system is that fingerprint im-
ages have distinct patterns of thin curves, remotely re-
sembling zebra stripes. Reinforcing the harmonics that
create these curves will emphasize the essentials of the
fingerprint, while suppressing the artifacts.

As mentioned in Section 3, halftoned images that are
fixed points of the clipped M-lattice system are asymp-
totically stable. This means that even though reaction-
diffusion is a small-signal phenomenon, the large-signal
evolution of the system toward a binary output image
does not destroy the restoration performed by the linear
behavior.

Let A and H be block-circulant symmetric matrices.
Then the clipped M-lattice system, (8), can be written
as follows:

W = a(it) (77, 1) + s(7) — h(7D) * x(7, 1),(9)

where 7 € Z2, a(7i) and h(77) are the FIR filters, corre-
sponding to A and H, respectively, and s(77) € [—1, 1]
is the original finely quantized input image signal.

The advantage of using this type of the clipped M-
lattice system for the pre-processing of fingerprints is
that it can be guaranteed to produce binary outputs [17].

Proposition 4.1 Assume that the clipped M-latlice
system, (8), is totally stable. Suppose that A and H
used in the clipped M -lattice system, (8), correspond to
symmetric filters, and the following conditions are sat-

1sfied:

A#0
argmax |a(i) + —=|.
720

Then ¥ € {1, 1}7V.

It now remains to demonstrate that (9) possesses the
desired pattern-formation properties.

4.1 Small-Signal Reaction-

Diffusion

Regime:

Choose A and H such that the unique interior fixed
point, ¢ (1) € (=1, 1), of (9) is at s(77). Denote the DFT

- -

representations of the filters by A(k) and H(k). Then

-

all the A(k) coefficients must be negative [26]. Before
(i1, t) reaches the clipping levels of (7), (9) simplifies
to:

W = (i) + (a(ﬁ) — %h(ﬁ)) (i, t). (10)

Taking the DFT of both sides of (10) in order to separate
variables yields:

WED s+ (4 - £r®) vk 0. (1)

whose solution for each k is:

ik, 1) =

= def - 1 -

where F(k) = A(k) — TH(]C), and the initial condition
is set to S(/;), the DFT equivalent of the original image.

Hence, from the discussion in Section 2, making F(/;)
positive for a set of spatial frequencies creates the onset

of growing spatially-stationary waves.



The adaptive filter, H(/;), was designed so as to
include the information about the dominant orienta-
tion at each pixel of the original image, shown in Fig-
ure 3(a) [28]. The dominant orientation at a pixel is
characterized by the angle, 8; € [—w, 7], and by the rel-
ative strength (or magnitude), m; € [0, 1], of that an-
gle’s presence at pixel ¢. Each filter is a 2-D Gaussian,
whose level sets are oriented ellipses. Denote the diag-
onal matrix of variances by V;, the rotation matrix by
©®;, and the position vector by 7 € Z%:

2
2

Vi:|:0-dx (3 ]’Gi:[cosﬁi —sin 6;

o5y sinf; cosb; (13)

The relative sizes of Uix and U?yy depend on m; and

determine the skewness of filters with respect to the
dominant orientation:

2 L 2 2

Oy = 5(1 - mi)a Oio = L— Oy (14)

where L x L is the size of the filter mask in pixels. Then

the (unnormalized) oriented low-pass filter is given by:

hi(il) = exp{-i’ O] V;0;ii}. (15)

Pertinent to fingerprint restoration is the kind of fil-

tering that delineates the ridges, while cancelling fluc-

tuations in the DC level and getting rid of extraneous

information. Thus, H (k) and A(k) are constructed in a

way that makes the frequency bands corresponding to

1
the ridges have negative DFT coefficients, and the T
factor amplifies the effect.

4.2 Large-Signal Regime: Halftoning

Proposition 4.1 gives sufficient conditions for ensur-
ing that the large-signal equilibrium output pattern is
binary. These conditions place restrictions on the ele-
ments of the filter A(7). The needed additional flexi-
bility is provided by the A(/;) filter, which has negative
DFT coefficients. For instance, in fingerprint restora-

-

tion, we use A(k) to cancel the unwanted harmonics,
most importantly the DC term, k=0.

Figure 3(a) is a typical scanned and finely quantized
fingerprint image from the NIST database. The origi-
nal image is 512 x 512 pixels and was low-pass filtered
and down-sampled by a factor of 2 in each dimension in
order to speed up the computation. From the figure, it
can be seen that the original fingerprint is corrupted by
a number of scratches, and several regions are obscured
by uneven illumination. As shown in Figure 3(b), the
standard fingerprint halftoning method, based on adap-
tive median filtering and thresholding, only makes these
artifacts more apparent, because it increases the image’s
contrast [29]. The adaptive threshold is set to the aver-
age of the minimum and the maximum gray levels within

some neighborhood surrounding each pixel of the orig-
inal fingerprint image. The optimal size of the window
was determined to be 5 x 5 pixels by trial and error.
Other standard halftoning methods, such as ordered
dither or error diffusion, will perform poorly also, be-
cause they have no built-in restoration mechanism and
will halftone both signal and noise alike.

Using a two-stage system, consisting of some con-
ventional image restoration algorithm, followed by
adaptive-thresholding type of halftoning is another vi-
able alternative. However, there are two arguments in
favor of using the clipped M-lattice system-based ap-
proach. First, the analysis of Section 4.1 implies that
the attainable signal-to-noise ratios can be very large.
Essentially, the clipped M-lattice system applies the fil-
ters, a(77) and h(7), an infinite number of times by the
virtue of being a continuous-time system. Second, no
separate halftoning step is needed, since the clipped M-
lattice system binarizes the image by setting the ele-
ments of h(7) in accordance with Proposition 4.1.

Other researchers have succeeded in using the
reaction-diffusion paradigm for performing operations
that are relevant to the pre-processing of fingerprint im-
ages. One effort, which, incidentally, was not specifically
targeted for fingerprint restoration, deals with replac-
ing portions of fingerprints with patches, whose visual
appearance resembles that of a generic fingerprint tex-
ture [30], [31]. However, the inserted patch may turn
out to be substantially dissimilar from the missing sec-
tion of the original image. Another report describes
the restoration of noisy fingerprints with a particular
reaction-diffusion system [32]. However, the output im-
age 1s not a halftone. Our new technique is inspired by
these previous approaches and accomplishes restoration
and halftoning simultaneously.

Figure 3(c) displays the processed fingerprint image.
The scratches have been removed and the unevennesses
in the DC levels throughout the image have been elim-
inated. Essential detail such as ridges and bifurcations
appear as continuous black curves, distinctly enhanced
against a noise-free white background. Moreover, ridges
and bifurcations have been extended even into the re-
gions where they are barely detectable in the original im-
age. This illustrates the celebrated synergetic property
of reaction-diffusion systems: the emergence from noise
of a spatial pattern, whose qualitative characteristics are
pre-determined by the system’s parameters [1], [11]. Us-
ing the connection machine (CM-2), the final image is
produced in 25 iterations at the time step of 0.1 sec. For
viewing convenience, Figure 4 shows a 128 x 128 pixel
middle-top section of each respective image of Figure 3,
magnified by a factor of 2 in both dimensions.



class of both R[A] < 0 either R[A] > 0 A type of
wave (stable) (unstable) solution
traveling decaying growing complex oscillatory
standing decaying growing complex oscillatory
(sum of a decaying | (sum of a growing
traveling wave traveling wave
and its reflection) | and its reflection)
stationary decaying growing real non-oscillatory

Table 1: The kinds of modes admitted by a 2 x 2 reaction-diffusion system. The terms “decaying” and “growing”
refer to the temporal behavior.

Figure 3: Restoration and halftoning of fingerprints. (a) the original “fingerprint” image; (b) the “fingerprint” image
halftoned by a standard adaptive-threshold method; (c) the “fingerprint” image restored and halftoned by the clipped
M -lattice system operating in the reaction-diffusion mode utilizing orientation information at each pixel of the original.



Figure 4: Magnification of a 128 x 128 pixel middle-top section of the images in Figure 3. (a) original; (b) halftoned
by a standard adaptive-threshold method; (c) restored and halftoned by the clipped M-lattice system.



5 Conclusions

We have reviewed the reaction-diffusion model with
emphasis on its pattern-formation potential. In an at-
tempt to broaden the class of non-linear reaction func-
tions that lead to bounded reaction-diffusion systems,
we have introduced the M-lattice system, a massively
parallel non-linear dynamical system. We have shown
that the clipped M-lattice systems is capable of synthe-
sizing textured images by the same mechanisms as does
the reaction-diffusion system.

The problem of fingerprint restoration and halftoning
is a natural application of the clipped M-lattice sys-
tem, because of its ability to synthesize zebra stripes,
which appear qualitatively similar to ridges and bifur-
cations comprising human fingerprints. Using orienta-
tion detection for designing the system parameters so
as to emphasize the significant features of a fingerprint
image causes the clipped M-lattice system to act as an
infinitely-aggressive band-pass filter. As a result, ridges
and bifurcations are extracted at the highest contrast,
even if they are only faintly detectable in the original im-
age, while scratches, unevennesses in illumination, and
other extraneous detail are removed. The contrast of
the restored features is enhanced with the help of the
binarization capability of the clipped M-lattice system.
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