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ABSTRACT

This paper presents a novel non-linear dynamical system
called the “M-lattice system”. This system is rooted in
the reaction-diffusion model, first proposed by Turing in
1952 to explain the formation of animal patterns such as
zebra stripes and leopard spots. The M-lattice system is
closely related to the analog Hopfield network and the cel-
lular neural network, but has more flexibility in how its
variables interact. In particular, the model is well-suited
to a variety of applications formulated as constrained non-
linear optimization. The present study demonstrates the
use of this model for two different image halftoning exam-
ples. The first example synthesizes a halftone of Einstein
in the “hand-drawn” style of the Wall Street Journal por-
traits; it illustrates how a more flexible quality metric can
be used when the binary requirement is stated as an ex-
plicit constraint. The second example synthesizes halftones
free of correlated artifacts; it illustrates the noise-shaping
capability of the M-lattice system.

1. INTRODUCTION

The present research has originated in the investigation
of the usefulness of reaction-diffusion systems for model-
ing natural textures. A reaction-diffusion system is a set
of heat equations coupled by, typically non-linear, reaction
terms. The reaction-diffusion model was first proposed by
Turing in 1952 in order to explain mammal coat patterns,
such as zebra stripes and leopard spots. Until recently,
reaction-diffusion systems have been researched predomi-
nantly by mathematical biologists working on theories of
natural pattern formation and by chemists working on mod-
eling the dynamics of complex chemical reactions [1]. How-
ever, the past three years have seen a significant surge in
interest in reaction-diffusion systems, primarily for exploit-
ing them in the areas of computer graphics and image pro-
cessing [2], [3], [4]

In order to form patterns a valid reaction-diffusion sys-
tem must exhibit local instability to small random pertur-
bations. That notwithstanding, the system should be stable
in the large-signal sense for practical reasons. A major dif-
ficulty associated with the reaction-diffusion paradigm in
its standard form is that the system is stable only for a
restricted class of non-linear reaction functions. This draw-
back narrows the scope of the model’s engineering applica-
tions, due to numerical overflow.
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A common approach aimed at preventing numerical over-
flow from plaguing the simulations of reaction-diffusion sys-
tems on the digital computer has been to clip the magni-
tudes of the state variables by adding an “if” statement to
the numerical method (e.g., Forward Euler) used for solving
the system of differential equations [3]. However, this tech-
nique does not guarantee that the system will reach equi-
librium; moreover, it destroys the mathematical integrity of
the original dynamical system.

The main contribution of this paper is the formulation
of the M-lattice system. By using a warping function to fa-
cilitate stability, this new system allows more flexible non-
linear interactions than the reaction-diffusion system. Two
of the capabilities of this model are illustrated in an appli-
cation to digital halftoning of images.

2. M-LATTICE SYSTEM

Let ¢:(t) € R be a state variable as a function of time
at each lattice point ¢, where ¢ =1, ..., N. Let x;(¢) be an
output variable, obtained from ;(t) via x:(t) = g(¥:(t)).
Throughout this paper, the “warping” function, g(u), an
example of which appears in Figure 1, is a saturating piece-
wise linear function that can have an arbitrarily large num-
ber of straight-line segments. Construct z/_;(t) and ¥(t) by
concatenating ¢1(t), ..., ¥n(t) and x1(t), ..., xw(t), re-
spectively into column vectors.

Definition 2.1 Suppose that the given function, ®({(t)),
18 continuous, twice-differentiable, and bounded at least above.
Let the matriz A be real, symmetric, and negative-definite:
AcRVN A =1a;], A=AT, and Vi \;[A] < 0. Then
the M -lattice system is the following non-linear dynamical
system:

di(t - .
WD ad) + Feoxn), 1)
As part of the analysis, we have shown that a subclass
of the M-lattice system possesses asymptotic convergence
properties, regardless of the initial conditions.

Proposition 2.1 Consider a special case of the M -lattice
system, (1), in which A = Diag {a1, ..., an}, Vi a; <0.
Any solution trajectory of this diagonal-state M -lattice sys-
tem converges to a finite asymptotically stable fized point,

G eRY (or ¥ e[-1, 1]V).
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Figure 1: The plot of a 7-segment piece-wise linear clipping

warping function. Slopes are T

Thus far, no proof of total stability exists for the more
general system, (1). However, if the system does not exhibit
limit cycles and if there exists a fixed point of the form
X € {-1, l}N, then convergence to such a fixed point is
guaranteed [5]. In all cases of the type that we discuss
below, the general M-lattice system exhibited convergence
in computer simulation.

For certain types of objective functions, the M-lattice
system converges to the (appropriately defined) local max-
ima of ®(y(t)) with respect to ¥ [6]. Thus, in many sit-
uations it is advantageous to use the M-lattice system for
non-linear optimization. The next section describes two
such examples.

3. HALFTONING

Suppose 7 € Z2; s(l) € [-1, 1] is the continuous-tone
(or finely quantized) original input image signal; y(@t) €
{-1, 1} is the output halftone image; and h(#) is a 2-D
filter. The halftoning method must yield an image which
appears perceptually similar to the original gray-scale im-
age. Least-squares halftoning approaches receive continual
attention, because they can employ explicit models of the
human visual system and of the printing device [7].

3.1. HALFTONING AS NON-LINEAR
PROGRAM

The problem of halftoning can be stated as a non-linear
program:
JR R/ T =
min o§" By — (B5)" § (2)
7
subject to constraints:

yi—1 > 0, (3)

where the vectors are the standard concatenations of the
corresponding sequences, B = HTH, and H is a circulant
matrix with k(i) in the first row. The particular form of
constraints, (3), forces each pixel to assume binary values.

In order to solve this problem using the M-lattice sys-
tem we combine the objective function to be minimized,
(2), with the N constraints, (3), into the Lagrangian cost
functional with the help of the Karush-Kuhn-Tucker condi-
tions [8]:

min £(§), where
7
N O AT = (2
ﬁ(y) = 5:{/ By—(BS) y+2pz(yi _l)a (4)
pi < 0, pi(yi-1)=0. (5)

The Lagrange multipliers, p;, are the varying penalty terms
that enforce the constraints according to (5). As a result,
the unconstrained minimization of £(¥) in (4) produces the
optimal halftone image.

The optimization problem, (4), is “programmed” onto
the M-lattice system, (1), by setting ¥ equal to ¥, £(¥) to
®(Y), and taking partial derivatives.

Halftoning with the Hopfield network requires setting
bi; > 0; otherwise, the optimal values of y; will not be bi-
nary [9], [5]. However, treating halftoning as a non-linear
programming problem and solving it with the M-lattice sys-
tem offers considerable flexibility in the choice of the quality
metric and in the functional form of constraints.

In order to demonstrate this flexibility, we encorpo-
rated orientation detection into the halftoning quality met-
ric. The adaptive filter matrix, H, was designed so as to
include the information about the dominant orientation at
each pixel of the original image, shown in Figure 2(a) [10].
The dominant orientation at a pixel is characterized by the
angle, §; € [—m, «], and by the relative strength (or magni-
tude), m; € [0, 1], of that angle’s presence at pixel 1. Each
filter is a 2-D Gaussian, whose level sets are oriented el-
lipses. Denote the diagonal matrix of variances by V;, the
rotation matrix by ©;, and the position vector by @ € Z2:

.0 8
Vi:|:07 0 0, = cos

0 Ty sin 8;

—sin 8; :| . (6)

cos §;

The relative sizes of a?ym and a?yy depend on m; and deter-
mine the skewness of filters with respect to the dominant
orientation:
L
a'?yy = 5(1 - mi), 0'12@ =1L- azz,y’ (7)
where I x I is the size of the filter mask in pixels. Then
the (unnormalized) oriented low-pass filter is given by:
hi(i) = exp{-i' @] V0;ii}. (8)
Since no effort is made to design H in a way that would
result in b;; > 0, the non-linear constraints provide the only
mechanism for driving the output pixels to the limits of
the gray scale. Figure 2 displays the result, which exhibits
more of the line and curve features found in hand-drawn
“halftones” (such as the Wall Street Journal portraits).
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Figure 2: Orientation-sensitive halftoning. (a) the origi-
nal “Einstein” image; (b) the “Einstein” image adaptively
halftoned using orientation information at each pixel of the
original.

3.2. NOISE-SHAPING LEAST-SQUARES
HALFTONING

It is generally agreed that error diffusion produces the
best results in terms of artifacts [11]. However, the causal-
ity of the algorithm prevents it from making sharp tran-
sitions and tracking edges properly [12]. In contrast, the
least-squares halftoning techniques render edges well, but
suffer from granular artifacts. We show that the M-lattice
system naturally combines noise shaping with least-squares
optimization, thereby offering the benefits of both.

Given a least-squares halftoning technique, set ®(Y) to
the negative of the distortion measure. For example, if

" A "
o(y) = (HTS)TX - EXTHTHx, (9)
then at an equilibrium (1) yields:
— Ay = HTs-HTHY, or (10)

- (A-H"H) Y H's-H H(Y-¢). (11)

Now set — (A - HTH) =1, and let q"déf X — z/_;be the quan-
tization error (or the quantization noise) [5]. Then (10) and
(11) become:

v = HYs-HTH7 (12)

Thus, according to (12), the M-lattice system performs
non-causal error diffusion in the steady-state limit. For per-
ceptual reasons, it is desirable to minimize the low-frequency
content of the quantization error. Since HTH is a smooth-

ing filter, Hq 41 _ HTH becomes a high-pass filter. Then
it follows that A = —H¢. The action of the high-pass noise
shaping filter, Hg, gives the quantization noise the percep-
tually pleasant “blue” character [13]. We exploit the fact
that A can have off-diagonal elements by making it act as
a perceptually-based filter. Therefore, the resulting images
correspond to local minima that are visually more pleasant
than those produced using a diagonal A matrix.

Starting with the equation for error diffusion, (12), and
reversing the above steps leads to (10), the equation for the
M -lattice system in steady state. Error diffusion has been
modeled as a Hopfield network that uses ¢(%;) in place of
g(:) [12]. However, the non-monotonicity of ¢(t;) causes
instability. In contrast, slightly perturbing A so as to make
it negative-definite guarantees that (1) will be stable for bi-
nary outputs. Hence, the M-lattice system is a more suit-
able model for non-causal error diffusion.

For the sake of simplicity we programmed the M-lattice
system with the symmetric version of the original Floyd &
Steinberg error filter. Figure 3 shows the magnified version
of a test image and the result of halftoning it by the M-
lattice system. The new method provides accurate detail
rendition without introducing correlated texture. However,
some perceptual artifacts still occur, because the filter co-
efficients have not yet been optimized after the causality
constraint was lifted.

4. SUMMARY

We have presented the M-lattice system and applied it
to digital halftoning of images as one of many potential ap-



Figure 3: Noise-Shaping Least-Squares Halftoning. (a) a
portion of the original “Lenna” image (magnification is x2
on a side); (b) the image in (a) halftoned by the M-lattice
system.

plications. As a non-linear programming technique, the M-
lattice system is capable of solving constrained optimization
problems with flexible objective functions. Orientation-
sensitive halftoning makes use of this property. When the
objective function is a quadratic form, the M-lattice sys-
tem can be designed to perform blue noise filtering. This
implies that the resulting halftone images can be made not
only optimal in the least-squares sense, but also perceptu-
ally pleasant.
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