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Abstract

The Brodatz Album has become the de facto stan-
dard for evaluating texture algorithms, with hundreds
of studies having been applied to small sets of its im-
ages. This paper compares two powerful recognition al-
gorithms, principal components analysis and multiscale
autoregressive models, by evaluating them on a 999-
mmage database derived from the entire Brodatz Album.
The variety of homogeneous and non-homogeneous 1m-
ages studied is thus nearly an order of magnitude larger
than has been compared before, giving one snapshot of
the “state of the art” in real-time texture recognition.

1 Introduction

Image recognition applications are shifting rapidly
from traditional areas of target recognition and satel-
lite imagery to new areas in multi-media image/video
analysis and retrieval of visual information. Many of
the old applications can be typified by having a small
number of “classes” of patterns, e.g., wheat, grass, wa-
ter, and a large availability of training samples of each.
In contrast, many new applications have a huge num-
ber of classes and a small set of representative samples,
e.g., searching through video for a particular shot. This
paper examines and compares two powerful recogni-
tion methods in a new multimedia search environment
where real-time discrimination between over a hundred
competing classes is important.

2 Brodatz texture database
The “Brodatz texture database” is derived from the
Brodatz Album [1]. Tt was formed by cropping nine

128 x 128 subimages from the centers of 1111 different
original 8-bit 512 x 512 images received on tape from
the Georgia Institute of Technology. Thus the database
consists of 999 different 128 x 128 8-bit images, which
can be considered to represent 111 different “classes” of
data. Consequently it has a relatively large number of
classes, and a small number of examples for each class.

Most texture studies on classification, discrimina-
tion, and segmentation have been run on small subsets
of test data from the Brodatz Album, typically four to
sixteen 1mages at once. Moreover, the tested images
usually exhibit strong homogeneity within each class
as well as visual and semantic dissimilarity between
classes. Often they are chosen to all be “microtex-
tures”. This study differs in that it includes approxi-

1The Brodatz Album actually has 112 different textures, of
which D45 was missing from the tape.
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mately an order of magnitude greater variety, including
many inhomogeneous and large-scale patterns.

The commonplace restriction of texture studies to
homogeneous microtextures is an artificial and poten-
tially misleading scenario. Results may obtain 90-100%
accuracy on small sets of such data, but these results
do not typically extend to real scenes, which usually
also contain non-homogeneous and non-textured re-
gions. By including the non-homogeneous Brodatz im-
ages in the database, a much more difficult and realistic
scenario is obtained. We have found subsets of the Bro-
datz database which reach 100% classification accuracy
with no false alarms [2], but performance drops signif-
icantly when considering the whole database.

For a very inhomogeneous Brodatz image, humans
might not classify its 9 database images as being from
the same class. A true “semantic classification” would,
for example, be expected to identify that all lizard skin
images are similar even if they came from different orig-
inal Brodatz images. This study does not explicitly
consider semantic criteria; subsequently, its notion of
“similar images” may not match that of humans.

Note additionally that the Brodatz Album has lim-
ited variety in pattern scale, rotation, contrast, and
perspective.  Developing methods to handle these
transformations is essential for recognition in real
scenes, but cannot be addressed with the present Bro-
datz data unless it is altered. Nonetheless, the current
database is significantly more diverse than has been
considered in prior texture analysis studies. Conse-
quently, it provides an important benchmark for eval-
uating progress in texture recognition.

3 Two recognition methods

Principal component analysis is an important tool
in pattern recognition, and has been successfully ap-
plied to small sets of textures [3] as well as many other
patterns for representatlon recognition and discrimina-
tion. The key difference in the method used here is that
it has been made shift-invariant which greatly improves
its performance on textures. The shift-invariance is a
consequence of discarding the phase of the patterns in
a method similar to that used for face recognition by
Akamatsu, et. al. [4]. The training and evaluation for
this method, its implementation in the image database
environment, and its use in ranking “how easy” each
Brodatz image is to classify are described in [2]. The
features produced for each database image consist of 99
projection coefficients onto a set of eigenfunctions. The
eigenfunctions are from the pooled covariance matrix of
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Figure 1: Performance comparison of SAR and princi-
pal components methods over entire Brodatz database.

a randomly-chosen training set of 100 images. Three
weighted least-square distances are compared here on
the 99 features and on a feature subset of size 20.

The second recognition method is based on a multi-
scale simultaneous autoregressive (SAR) model. This
is a second-order noncausal model characterized by five
parameters at each resolution level. At any one scale,
the model 1s shift-invariant in its assumption that the
parameters are not spatially varying. The model used
here is equivalent to that of Mao and Jain [5] with
the exception of not including their rotation-invariant
averaging. Parameters and parameter covariances for
this model were estimated for each of the 999 images.
The covariances for each pattern were used in a Maha-
lanobis distance during classification (found to perform
significantly better than the Euclidean distance.)

For both methods the features and their weights are
precomputed. Distances between features are com-
puted in real-time on a SUN-SPARC workstation.

4 Performance analysis

Each of the nine subimages taken from an original
Brodatz image are considered to be from the same class.
Recognition performance for several variations of the
two different methods is shown in Figure 1.

This figure was formed as follows. A search was done
for each of the 999 database images. The x-axis cor-
responds to the number of database images closest to
the test image which were searched for “matches”; i.e.
samples from the same class. For each image, a max-
imum of 8 matches could be found for a 100% recog-
nition rate. Each y-axis value was found by averaging
the recognition rates over all 999 images. For exam-
ple, if 13 closest images are being searched, and if 4
matches are found for one of the 999 images, then the
recognition rate for that image would be 50%. This
recognition rate would be averaged with those of the
other 998 images to obtain one data point in Figure 1.

These performance criteria differ from those used in
traditional recognition scenarios. Here there is no need
to decide a label for each image. Rather, the goal is
to retrieve and display images which are close to the
selected image in real-time. The environment is one
of interactive image retrieval where the user can view
40 images in a display at once. As long as the images
found within the viewing window contain the “correct”

images, the system is successful. Moreover, a limited

number of false positives can be desirable for finding

similar-looking images.

The top four curves in Figure 1 correspond to recog-
nition performance using the SAR model estimated
over different resolution levels. The best results were
achieved using the levels 2,3, and 4. At five parame-
ters per level, this required estimating 15 features per
128 x 128 image. Below the top five SAR results are
the results using features corresponding to the twenty
biggest eigenvalues and a Euclidean (identity weighted)
distance. It is interesting to observe that in spite of the
use of decorrelated features, including more (99) actu-
ally decreases the performance. (Using less than 20 also
decreased performance.) Using the principal compo-
nents features and distance weights of inverse eigenval-
ues or inverse feature variances performed even worse.
It is important to remember that although directions
with greater variance may be optimal in mean-squared
error for representation, they are not necessarily opti-
mal for discrimination.

It may seem surprising that fifteen SAR features
achieved greater than 90% accuracy with the “in
view=success” criterion while twenty principal com-
ponents achieved less than 80%. Eigenfilter-based
features have been found to perform as well as co-
occurrence features on small sets of Brodatz images
[3]. Since co-occurrences contain more information
than correlations, and since basic SAR features are es-
timated from correlations, it seems that significant im-
provement is due to the multi-scale information. The
multi-scale SAR should be compared with other filter-
banks such as Gabor, wavelet, and steerable pyramid.

Results here are displayed as for an “operating char-
acteristic” indicating how the performance increases
monotonically with the permitted number of false pos-
itives. In the limit as the number of allowed false pos-
itives goes to 990 all the curves reach 100%. A mean-
ingful way to demonstrate that a texture recognition
method is better than these is to show that its operat-
ing characteristic lies above the results in Figure 1.
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