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Abstract

Random field models are able to synthesize a
large variety of complex patterns with a small
number of parameters. This paper discusses the
use of a Gibbs random field model as part of
an image coding system. In particular, some se-
mantic and perceptual attributes of this model
are addressed.

1 Introduction

The Gibbs random field (GRF) model has been
shown to produce a large variety of texture pat-
terns [1]. Theoretically it is capable of synthe-
sizing any pattern, including both random and
regular textures. In practice, it models two-
dimensional stochastic patterns very well with a
small number of parameters.

In the next section some brief background is
given on the GRF. Following that, I discuss its
implementation as part of a texture coding sys-
tem. In Sections 4 and 5 some perceptual and
semantic issues concerning the model are ad-
dressed.

2 Background

A Gibbs random field is defined by

1 1

P(x) = £ exp(~ = B(x), (1)
where x is a vector representing the image, T is
the “temperature” of the field, 7 is a positive
normalizing constant, and F(x) is the Gibbs en-
ergy function. Textured image data is formed by
synthesizing samples from this probability distri-
bution.
There is some freedom in the choice of the Gibbs
energy function, E(x). Let each site s in an M x
N image S contain a graylevel value ¢ € A =
{0,1,...,n—1}. Wesay . € A,Vs € §S. To each
site in the image we also associate a symmetric
neighborhood, A: C 8. The symmetry of the
neighborhood implies that Vs,r € 8, s € N, if
and only if r € N-.
The Gibbs energy can now be defined by speci-
fying interactions between sites in the image. In
most of the image processing and computer vi-
sion literature, the Gibbs energy has been defined

as the following sum:

E(x)=> Ve )+ Y > Velzsz,), (2)
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where the V.’s are the “single-site potentials”
and the V,’s are the “two-site potentials”. The
single-site potentials are also called the “external
field”. Note that this energy only specifies inter-
actions between at most two pixels in an image.
The different models corresponding to this form
of the energy are typically called “auto-"models,
after Besag [2]. An example of a Gibbs model
having an energy function of this form is the
auto-binomial model used by Cross and Jain [1].
The homogeneous auto-binomial Gibbs energy is
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This energy function has parameters « and 3.
The parameter o controls the influence of the
external field, which allows one to impose struc-
ture on a pattern from an outside source (e.g.
the force of gravity acting on each pixel.) The
second parameter influences the “attraction” or
“repulsion” between neighboring pairs of pixels
in the image. This parameter is sometimes called
a “bonding parameter.”

3 Coding textures

Like many nonlinear systems the GRF produces
complex patterns with a comparatively small
number of parameters; consequently, it has po-
tential for compressing images. Although the-
oretically able to take on any configuration, a
given sample of the Gibbs distribution is most
likely to have a stochastic appearance. Thus, it
is currently easiest to apply the model to the
stochastically textured parts of images. These
textured regions are where the standard im-
age coding tool, the Discrete Cosine Transform
(DCT), tends to perform the worst; hence, this
behavior of the GRF makes it a good candidate
for pairing with a DCT.

The simplest place to begin studying the GRF for
coding 1s in an assumed homogeneous textured
region of an image. Note that the problem of im-
age segmentation to obtain such a region is still



an open one, and one which is also actively in-
vestigated using the GRF [3]. Also, truly homo-
geneous texture regions are not typical, compli-
cating this assumption. The GRF can be made
nonhomogeneous, but at the cost of additional
parameters. (This is true for most models.)

One example of coding homogeneous texture in
a real image is shown in Figure 1. In this figure
two 64 x 64 patches of fur were removed from
the original 512 x 512 image and replaced with
samples of a second order anisotropic GRF. Only
the top half of the original image is shown, to
provide a closer look at the differences.

One patch was extracted from each side of the
mandrill’s face. For each patch, four bonding
parameters were estimated at the shown image
resolution. The estimation was performed us-
ing standard non-causal auto-regressive param-
eter estimation. The parameters estimated for
the left patch were § = 0.494(E), —0.031(N),
—0.003(NW), and 0.046(NE) (corresponding to
eight compass directions since the neighborhood
is symmetric). For the right patch they were
slightly different, § = 0.486(E), —0.049(N),
0.072(NW), —0.004(NE).

These parameters were then inserted into the
auto-binomial Gibbs energy. The temperature
was set to a constant 7' = .37 and an initial ran-
dom image configuration was chosen to have the
same histogram as the extracted patch. Ten iter-
ations of the Metropolis exchange algorithm on a
periodic lattice were applied to the initial images,
resulting in the synthetic fur patches'. The two
patches were then inserted back into the image
using the multiresolution spline of [4] to reduce
perceptual boundary effects.

The estimation involved for the mandril fur was
straightforward. However, in general this is not
always the case; in particular, care must be exer-
cised in choosing T' [5]. Note that each patch was
synthesized with five parameters (approximating
8192 pixels with ten parameters); on this pattern
the GRF requires a couple of orders of magni-
tude fewer coefficients than a DCT. However, one
cannot extrapolate this rate as the coding rate —
one must additionally consider the overhead of
modeling the image histogram, and of obtaining
and representing the regions in the image cor-
responding to the texture. This overhead and
the resulting bit rate performance of the GRF
varies significantly with different images; there
is not space here for a meaningful comparison.
However, let us briefly consider two other issues
which are as important as bit rate performance:
perceptual and semantic performance.

4 Perceptual issues

It has been shown recently [6] that the sec-
ond term in the Gibbs energy of (2) is equiv-

!This procedure is the same as in [1]; note that o can
be ignored because of the choice of the synthesis method.

alent to a linear combination of pairwise co-
occurrence statistics (second order statistics of
the graylevels).  What makes this interest-
ing from a perceptual standpoint is that co-
occurrence statistics are a well-studied tool for
texture analysis, and second-order statistics for
perceptual analysis. Moreover, the Gibbs energy
can be defined for any number of interacting pix-
els by including more terms in (2) corresponding
to higher order statistics. Thus, the GRF is a
flexible representation for studying perceptual is-
sues within a coding model.

In Figure 2 the absolute difference is shown for
the two images in Figure 1 (max value error un-
scaled = 204). Note that although the two im-
ages in Figure 1 are very hard to distinguish per-
ceptually, their error in the replaced patches is
significant. For modeling textures, one is gen-
erally not concerned with pixel-error; it is often
desirable for two textures to be considered the
same even if they differ in every position. Fur-
thermore, the error will also tend to be stochas-
tic, and it too may be modeled by a GRF. Thus
the GRF can provide for controlled study of per-
ceptual effects by varying its model parameters.

5 Semantic issues

As intelligent multimedia applications grow and
memory becomes cheaper, it is reasonable to ex-
pect that the long-term emphasis of image coding
may shift from pixel-level efficiency to “seman-
tic” efficiency. For example, one may expect to
see more applications that require the ability to
search rapidly through a database of images for a
“pattern that is similar to this one.” The human
is likely to describe the desired pattern semanti-
cally, as opposed to describing it by its DCT co-
efficients. Furthermore, two patterns that match
semantically may not have the same DCT coef-
ficients. In cases such as this, other features of
the data are needed. In particular, it may help
to represent pictures by different kinds of mod-
els — models whose parameters have a semantic
interpretation for the given data.

Coming up with a universal semantic model is
exceedingly difficult. What is more likely in the
interim is the development of a menu of mod-
els, each with its own advantages. The GRF
is one model (out of many) that could provide
a more semantic description for some parts of
an image, or for some classes of images. In [6]
we showed that the auto-binomial GRF param-
eters correspond to rates of “mixing” and “sepa-
ration” between different graylevels in an image.
For images of fluids, or substances which behave
similarly (e.g. desert sand) this model may be
considered “semantic.”

The rapidly growing interests in specialized
databases may also be expected to turn into an
important application area for semantic coding
models. In such databases, there tends to be a



(a) Top half of Mandrill image, 256 x 512, n = 16 graylevels.

Mandrill with two synthetic fur patches.
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were made with a second order anisotropic GRF.
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Figure 1: The 64 x 64 synthetic fur patches used in image



Figure 2: Absolute error between images on the previous page (black=0 error).

priori knowledge which can be exploited. For ex-
ample, the GRF is known to be able to efficiently
and accurately represent images of clouds [7]. If
one had a database of weather cloud images, one
might get excellent compression with the random
field model. Even more importantly, one might
be able to search for semantic features directly
from the coded representations, without having
to decompress all the images in the database each
time there is a request to find something.

6 Summary

This paper has presented the basic Gibbs ran-
dom field model for coding of stochastic textures
in images. The model is shown to be very flexible
with regard to perceptual tests that study statis-
tical influences. Also, it is argued that semantic
models will become increasingly important; some
special cases where the GRF can be considered
“semantic” are presented.
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