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Abstract
Gibbs random field (GRF) models work well for

synthesizing complex natural-looking image data
with a small number of parameters; however, es-
timation methods for these parameters have a
lot of problems. This paper addresses the analy-
sis problem in a new way by examining the role
of the temperature parameter of the Gibbs dis-
tribution. Studies of the model energy with re-
spect to the temperature are used to indicate pat-
tern equilibrium and regions of different behav-
ior, analogous to the existence of distinct phases
in a physical system. The results on equilibrium
and regions of different “phases” are offered as
explanations for some of the peculiar behavior of
current estimation algorithms.

1 Gibbs random fields

This paper focuses on the discrete Gibbs random
field (GRF), defined as follows. Let an image be
represented by a finite rectangular M x N lattice
S with a neighborhood structure N = {NS,S c
S8} where N. C 8 is the set of sites which are
neighbors of the site s € §. Every site has a
graylevel value z. € A = {0,1,...,n — 1}. Let x
be the vector (z.,1 < s < |8]) of site graylevel
values and €2 be the set of all configurations taken
by x. A neighborhood structure is said to be
symmetric if Vs,r € S, s € N, if and only if
T €N,

For the finite periodic lattice § with a symmetric
neighborhood structure, one can define a Gibbs
energy. There are many ways to define the en-
ergy; the choice studied here is the auto-binomial
energy of [1], which has been shown to synthe-
size a variety of natural looking image textures
[2]. The homogeneous auto-binomial energy is

E(X) = —Z ars + Z Brzszr |, (1)

SES reN;

where the model parameters are «, the external
field, and f., the bonding interactions. A joint
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probability distribution is assigned to the Gibbs
energy yielding the Gibbs random field,

P = e (-2E), @)

where 7 is a positive normalizing constant known
in the physics literature as a partition function
and T 1s the “temperature” of the field.

The synthesis process is one of finding the con-
figuration in € which maximizes the probability
P(x), minimizing the Gibbs energy. Image data
is typically synthesized iteratively, using a Monte
Carlo method such as the Metropolis exchange
algorithm. In this algorithm it can be shown
that the external field cancels, leaving only the
bonding parameters.

If the temperature 7' is lowered during the Monte
Carlo synthesis then the synthesis process be-
comes an example of simulated annealing. Sim-
ulated annealing is a popular nonlinear opti-
mization technique where a cost function is sub-
stituted for E(x), and consequently minimized.
There is a key observation in the simulated an-
nealing literature that prompts the study of tem-
perature presented in this paper. Kirkpatrick, et.
al.[3] observed that “more optimization” occurs
at certain temperatures than at others. These
favored temperatures are analogous to the phys-
ical idea of a “critical temperature,” a point that
marks transition between different “phases” of
the data.

The reason for considering these physical analo-
gies is that they have important implications for
parameter estimation. In this paper the ba-
sic temperature behavior of the isotropic auto-
binomial GRF is developed. It is shown how this
behavior can be used for parameter estimation
by combining it with an earlier result relating
co-occurrence matrices (pairwise graylevel statis-

tics) to GREF’s.

2 Why temperature analysis?
Of course, for the Gibbs random field to be of

general use, one needs to be able to estimate
its parameters reliably. This is currently not
the case. Methods for estimating Gaussian ran-
dom field models seem to be fairly well studied
[4]; methods for general GRF’s such as the auto-
binomial model have many problems, and their
behavior has not been clearly accounted for.



The popular analysis method of “Besag Cod-
ings” [2] involves a maximum likelihood estima-
tor formed over disjoint subsets of the lattice.
This nonlinear method is generally considered
cumbersome and difficult to use reliably [5]. Even
though it is easy to formulate the estimator for
the auto-binomial model [6], we confirmed that
its performance varies widely for different data —
it works well for selected images, but poorly for
others. In the next section we propose two new
explanations for the variation in performance.

A variety of other estimation methods have been
proposed [5, 7] all of which ultimately involve
computing counts of blocks in the image having
particular graylevel configurations, and then tak-
ing logs of ratios of these counts. (Note: the Be-
sag Coding method can also be implemented in
this way; we call this the “contingency table” im-
plementation later.) The problem that has been
noticed with all of these methods is that often
some of the counts are zero, and then one must
propose seemingly ad hoc alternatives to avoid
log(0) and division by zero. Some of these alter-
natives have been concluded to work well; how-

Figure 1: Equilibrium behavior is reached after 10 itera-
tions for 7' = 1000, and after 100 and 1000 iterations for
T =100,T = .01, respectively.

ever, no one has yet proposed the ranges where
they work well, or why. The temperature char-
acterization presented in the next section offers
an explanation of these ranges.

In their overview paper, Dubes and Jain [7] re-
view four estimation methods from the litera-
ture and discuss some of the shortcomings of the
methods. In their conclusions, they raise several
questions which they consider outstanding prob-
lems in Markov/Gibbs modeling. Two of them
are addressed in the rest of this paper. The first
is “what regions of the parameter space lead to
valid models?” and the second is “what regions
in the parameter space put the process into phase
transition?”

3 Temperature and energy

Temperature and energy are two physical quan-
tities that turn out to be important for even the
simplest GRF estimation. From [8] we know that
a given set of GRF parameters will synthesize a
variety of texture patterns while its energy is be-
ing minimized. This poses an obvious problem —
which pattern gets associated with the parame-
ters? One “physical” approach to this is to con-
sider that the pattern is not in “equilibrium” un-
less its energy has decreased to some level where
it has stopped changing. One then associates the
model’s parameters with the equilibrium pattern.
Early experiments assumed the number of itera-
tions required for equilibrium to be on the order
of 10-100 [2, 9]. Later we showed that the number
of iterations grows with model order and number
of graylevels, and can be tens of 1000’s in some
“practical” cases.

Consider the simplest case, an isotropic first or-
der GRF having 8, = 8 = 1 with A consist-

ing of the four nearest neighbors. Nine sam-

ples of this GRF are shown in Figure 1 where
N = M = 64 and n = 32 graylevels. Each
column corresponds to synthesizing at a differ-
ent temperature: T = 1000,100, .01 from left to
right. Note that parameters could also be con-
sidered as §/T = .001,.01,100. From top to bot-
tom the samples represent “snapshots” at ¢+ = 10,
100, and 1000 iterations during the synthesis al-
gorithm. Notice that the pattern in the first col-
umn does not change; in contrast, the “colder”
pattern at the right is still changing after 1000
iterations.

The allowance of 100 iterations for equilibrium
corresponds to the middle row of samples for the
temperatures shown. When (/T is estimated for
samples such as in Figure 1, it will be accurate for
the first two columns, but too low for the third
column. We offer this explanation for the appli-
cations of [6] where they noticed that the param-
eter estimates needed to be adjusted upward, but
did not know why.

Thus, we propose that the first problem with the
way estimation methods have been evaluated has
to do with a lack of attention to the pattern’s
equilibrium. An estimate taken while a pattern’s
energy is still decreasing should not be expected
to fit the parameters which are synthesizing the
pattern.

As mentioned in the previous section, another
problem with the current parameter estimation
methods is determining their region of validity.
This problem can also be more clearly under-
stood by examining the energy of the GRF at
different temperatures. For the GRF shown in
Figure 1, the mean energy was computed over
40,000 iterations after an equilibrium time of
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Figure 2: Normalized mean energy at each temperature for five different graylevels, n.

10,000 iterations (excessive for low n but not for
high n). The average energy is shown for § =1
and n = 2,4,8,16,32 graylevels in Figure 2. All
the values are normalized by (n — 1)? so that
they align at the high temperature side of the
graph. Now, let us consider how this graph illus-
trates the range of valid parameters §/T for the
isotropic first order GRF.

Consider the plot for the GRF when n = 2. No-
tice that at the right all values for 7" > 100 map
to the same energy. A similar saturation occurs
at the left for cold temperature. Thus, param-
eters estimated in these plateau regions will not
be unique. In fact, the patterns corresponding to
the energy at the right are binary noise, and to
the energy at the left are images with white on
one half and black on the other. If one thinks of
the binary image as being composed of a black
fluid and a white fluid, it has “mixed” on the
right, and “separated” on the left.

Alternatively, one could think of the mixture as
being in its liquid state on the right, and frozen
into a solid state on the left. Either way, a tran-
sition in “phase” of the material occurs in the
center. In the center, where the energy changes
abruptly as in a true “phase transition,” one finds

patterns that appear to be generally closer to nat-
ural textures.

Although a true “critical temperature” does not
exist in this region, we have shown in earlier work
that a similar kind of point, which we call a “tran-
sition” temperature, Ty, does occur [8]. By mea-
suring the specific heat of the binary process it
can be shown to correspond to the same region
where the “most optimization” occurs in simu-
lated anmnealing [3]. For GRF analysis, this re-
gion is where the energy fluctuation peaks, and
where small changes in the parameters become
more significant. In [8] the transition tempera-
ture for n = 2 was estimated to be at 1/7% = 1.7.

This analysis suggests that attempts to esti-
mate parameters should take into account these
transition regions and surrounding plateaus.
After conducting a brief empirical study of
54 synthetic isotropic “equilibrium” binary
GRF textures having parameters |3/T| €
{.01,.1,.5,.67,1,1.25,1.76, 5,10}, we found that
both implementations of the Besag Coding
method (one with Newton-Raphson, and one
with the contingency tables) performed best over
the central range of temperature values, |3/T| €
{.5,.67,1,1.25}, just under the estimated 1/T.



A much larger study should be conducted before
the accuracy can be meaningfully assessed.

The second explanation promised in this sec-
tion concerns the missing configurations. From
earlier results [8], we know that the GRF en-
ergy can be written as a linear combination
of co-occurrences. We also know that the co-
occurrence matrices will develop structure that
indicates which configurations occur with zero
probability [10]. Thus, the co-occurrence matri-
ces can be used to determine regions where the
positivity condition of the GRF is violated. The
co-occurrences also determine the energy, which
in turn determines the temperature. For n > 2
the lack of certain configurations actually be-
comes helpful for determining /7.

These results suggest the following method. Dur-
ing synthesis, one can use the co-occurrence
statistics to determine whether or not the energy
is still changing. Once the energy has stopped
changing, its value can be used to index into the
appropriate plot of Figure 2. Alternatively, one
can find the corresponding temperature analyti-
cally by fitting a sigmoid to each plot, E,(T) =
ﬁ. The parameters « and ¢ are determined
in advance for each curve, and can be used with
the co-occurrences to recover 7.

For example;, when n = 2 and the image 1is
64 x 64 as in Figure 2, a good approximation is
—E2(T)/8192 = {pitmor + 5. As T — 0 (freez-
ing), the co-occurrence matrix becomes as diag-
onal as allowed, with diagonal elements of .98.
As T' — oo (melting), the co-occurrence matrix
becomes uniform, with elements of .5.

4 Summary

The effects of temperature have been character-
ized for the isotropic auto-binomial Gibbs energy.
These results indicate the importance of consid-
ering equilibrium and transition behavior when
estimating the GRF parameters.
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