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Abstract

This paper is a series of three case study experiments aimed at determining prosodic control of vocalizations produced by an individual with severe dysarthria
. An adult male, age 52, with cerebral palsy and severe dysarthria participated in the study. There were three identical protocols for examining control of pitch, loudness and duration. In each protocol, the subject was instructed to sustain production of the vowel /a/ at three levels: low, medium and high. For each protocol, 51 vocalizations (i.e. 17 vocalizations at each level) were requested
. The average level of frequency, intensity and duration were collected for each utterance and tagged to the level requested. The data were analyzed to determine the number of distinct non-overlapping categories that the speaker was able to produce. Descriptive statistic and informational analysis calculations were used to determine the number of levels of control within pitch, loudness and duration (figure 1). Results for this individual indicated little to no consistent control of frequency, greater control for duration and the most control for intensity. These findings provide the impetus to further investigate the role of prosody control in this population. The potential for using prosodic aspects of dysarthric speech as an information-carrying channel has not been documented in the literature. 

Introduction

Dysarthria is a neuromotor speech impairment that may result from a congenital condition such as cerebral palsy or an acquired insult such as a stroke or motor vehicle accident. Slow, imprecise and variable speech imposes an information bottleneck, impeding efficient and effective communication. Concomitant physical impairments are also not uncommon. To compensate for their motor and speech impairments, some individuals are taught to communicate by pointing to or scanning through a set of objects, picture symbols or alphabet and number displays. Unfortunately, pointing and scanning is slow and can be physically fatiguing. Moreover, although an AAC system that does not include speech may serve vocational and educational needs, it may not sufficiently satisfy the individual’s social communication needs [Beukelman92]. Many individuals who have severe dysarthria and use AAC may have normal or exceptional intellects, reading skills and language skills and many would prefer to use their residual speech capabilities despite its limitations [Ferrier92; Fried-Oken85; Treviranus92]. They will exploit whatever residual speech available to them to express emotions, gain attention and signal danger [Beukelman92]. Interestingly, parents and caregivers of these communicators typically adapt to discriminate among dysarthric vocalizations that would otherwise be unintelligible to unfamiliar listeners. 

Automatic speech recognition (ASR) technology shows promise as a tool to allow individuals with severe speech impairments to use their vocalizations to communicate with unfamiliar listeners. ASR is an intuitive, hands-free interface that encourages face-to-face interaction. It also has the potential to be faster and less physically fatiguing than direct manual selection or scanning [Treviranus91]. Unfortunately current commercial technologies make strong assumptions about the users' speech patterns. Most commercially available speech recognition systems have explicit algorithms that factor out variations in pitch, intensity and duration [Rabiner93]. They assume that pitch, loudness and duration do not carry any linguistically salient information. When an individual with severe dysarthria attempts to use these systems there is a mismatch between the expected speech and the speaker's output rendering the technology useless. Commercial systems may be able to recognize the speech of individuals with mild impairments and/or individuals who have received sufficient training to alter their articulatory patterns to achieve improved machine recognition rates [Carlson87; Ferrier92; Freid-Oken85; Kotler97; Schmitt86]. Severely dysarthric speech poses a challenge for commercial systems. Although moderate success has been achieved by rebuilding acoustic models for specific dysarthric populations [cf. Deller91; Jayaram95], considerable interspeaker variability for this population remains a significant problem. Although highly variable phonetic characteristics typically impede accuracy rates for current automatic speech recognition systems, technologies capable of interpreting control of suprasegmental features such as pitch and loudness contour may enable individuals with severe dysarthria to control their VOCA using their vocalizations. Our approach to employing ASR is directed at the prosodic channel instead. We postulate that speakers with dysarthria would better control prosodic parameters, which require less motoric control and coordination than producing clear and concisely articulated speech sounds.

Despite the severity of speech impairment, communication exchanges that take place between an AAC user and a familiar communication partner (FCP) are generally complex and rich in information. A marked reduction in communication efficiency may result, however, when the same AAC user interacts with an unfamiliar communication partner. Vocalizations may be distorted in phonemic (referred to as “segmental”)
 clarity and/or prosodic (referred to as “suprasegmental”)
 characteristics. The communicative message is buried within the acoustic “noise” and must be decoded by the communication partner. While FCPs may use information from multiple communication channels (e.g., facial expressions, body language, emotional state, situational contextual cues, and acoustic cues) to decode the AAC user’s intended message, the vocalization recognition system will have access to only the acoustic channel.

Perceptual speech characteristics of various types of dysarthria have been documented thoroughly [cf. Darley69; Rosenbeck78]. Existing literature focuses on the degradation of the clarity, flexibility and precision of dysarthric speech. With advances in automatic speech recognition technologies, phonetic variability and acoustic distortion of the residual speech channel of individuals with severe dysarthria have been investigated [Deller91; Doyle95; Ferrier95; Jayaram95]. There is a paucity of literature, however, documenting the prosodic features of the residual speech channel of these individuals.

This investigation aims to determine the capacity of an individual with severe dysarthria to control the pitch, loudness and duration of his vocalizations. Understanding the degree of control within each parameter is the first step toward developing a vocalization recognition system which is sensitive to specific pitch, loudness and duration levels. Such a system may be integrated with a VOCA such that vocalizations serve as an alternative method of accessing longer, more complex pre-stored messages. In theory, individuals with only a few discrete vocalizations could potentially use various combinations of their vocalizations to formulate an increased number of unique messages. The supposition is that even the distorted speech signal is a channel for transmitting information for the purpose of communication. Ultimately, the communication aid of the future would act as a “familiar facilitator” which would support communication transfer between the non-speaking person and an unfamiliar listener.

The discovery of any information bearing prosodic parameters will have important implications for clinical protocols of assessment and intervention. To date, the capacity for individuals with severe dysarthria to encode information in the prosodic channel has not been documented. The literature and clinical practice report on the limitations of the vocal systems of this population. The abilities and extent of vocal control available to these individuals has yet to be uncovered. Identifying salient prosodic parameters has the potential to offer even those individuals with only a few discrete vocalizations an additional mode of communication. Some of the far reaching implications of using vocalizations include increased communication efficiency, reduced fatigue, increased face-to-face communication, improved communication naturalness and improved social integration. 


Positive findings would also provide guiding principles for designing more effective speech driven communication interfaces for individuals with dysarthria. An understanding of the user's abilities is prima-facie to the development of an assistive interface that optimally utilizes the user's capabilities despite physical and speech limitations. 

Results

Figure 1. The first graph shows control of low (P1), medium (P2) and high (P3) pitch. The degree of overlap indicates limited differential control. The middle graph shows control of short (D1), medium (D2) and long (D3) duration. The distributions have less overlap indicating greater control over this parameter. The last graph shows control of soft (L1), medium (L2) and loud (L3) vocalizations. Distributions for soft and loud vocalizations overlap minimally suggesting two distinct loudness levels are available for control of a vocalization driven communication aid. 
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The purpose of this investigation is to determine which parameters, if any, of the acoustic channel are salient to human listeners when decoding severely dysarthric speech. In light of highly variable and distorted phonemic features, it is hypothesized that prosodic features such as frequency and intensity contour may be more stable parameters of severely dysarthric speech. These parameters are temporally longer and therefore may offer greater vocal stability. 
· Non-impaired speakers typically communicate at rates between 150 to 250 words per minute (Goldman-Eisler, 1986). Their communication is usually efficient, timely and contextually relevant. AAC users, however, communicate at a rate of less than 15 words per minute (Foulds, 1987). Such reductions in rate of communication have implications for the quantity and quality of communication exchanges. The concept of encoding is introduced because of its potential to be useful in increasing the rate of communication when vocalizations are used as the input signal.  

Selecting symbols one at a time to construct a given message can impede communication efficiency. Message encoding is a rate enhancement technique whereby a sequence of symbols (i.e., letters, numbers or icons) together represent a longer, more complex message (Beukelman & Mirenda, 1992). There are several types of encoding strategies: alpha (letter) alpha-numeric, numeric and iconic encoding 
. Encoded messages can be retrieved by using memory-based techniques or chart-based techniques (Beukelman & Mirenda, 1992). Chart-based techniques
 reduce memory demands, assisting the communication partner and AAC user. 

Applying encoding strategies to vocalization recognition has the potential to increase rate and accuracy of message construction. Shorter vocalization strings would  be required to access longer, more complex messages. Encoding would be especially helpful when attempting to use a limited repertoire of vocalizations to map controls for a large array of symbols on a VOCA.

Motor Speech Disorders


Oral communication consists of  three basic processes: planning, programming and execution. Each process has associated with it a characteristic communication disorder. Impairments in planning communication result in aphasia
, a language disorder. Once a linguistic thought is planned, the speech sound musculature requires motor programming. These motor programs are executed to produce speech. While aphasia is a disorder of language, dysarthria and apraxia of speech are collectively referred to as motor speech disorders. Apraxia of speech is a disorder of programming articulatory movements intended to produce clear, concise and fluent speech. Dysarthria refers to disturbances of motor control involved in the execution of speech. Peripheral or central nervous system damage manifests itself as slow, weak, imprecise and/or uncoordinated speech (Yorkston, Beukelman & Bell, 1988). Movements of the lips, tongue, palate, vocal cords and/or the respiratory muscles may be implicated to varying degrees depending on the subtype of dysarthria (Darley, Aronson & Brown, 1975). 


Dysarthria as an impairment, disability and handicap.     The World Health Organization defines a disorder in terms of three basic levels: impairment, disability and handicap (Yorkston, Beukelman, & Bell, 1988). Impairment refers to a “loss or abnormality of psychological, physiological or anatomical structure or function” (Wood, 1980, p.377). Dysarthria is a neurogenic motor speech impairment. The presentation may include abnormalities in movement rate, precision, coordination and strength of the speech sound musculature (Yorkston, Beukelman & Bell, 1988). Disability refers to a reduced ability to perform an activity required to meet the needs of daily living (Beukelman & Mirenda, 1992). Dysarthria is a disability whereby speech intelligibility, rate and prosodic patterns are altered. Handicap refers to a disadvantage of function that results from an impairment or disability. Individuals with dysarthria are at a disadvantage in communication situations which require understandable, efficient and natural sounding speech. The results of this investigation will not reduce the impairment associated with dysarthria; however, they may contribute toward efforts that will help reduce the associated disability and handicap.


Speech intelligibility as a measure of severity.     Speech intelligibility is a common measure of the severity of dysarthria. Intelligibility is the ratio of words understood by the listener to the total number of words articulated. An operational definition for severe impairment due to dysarthria is necessary for this current research proposal. An individual with severe dysarthria is one whose speech sound intelligibility is reduced to a level where he/she is unable to communicate verbally in activities of daily living. These individuals would likely achieve functional communication through AAC approaches.  


Subtypes of dysarthria.     Various classification schemes of dysarthrias have been proposed. These include age of onset (congenital, acquired), etiology (neoplastic, toxic, degenerative), neuroanatomic area of impairment (cerebellar, cerebral, brain stem), cranial nerve involvement and associated disease entities (Parkinsonism, myasthenia gravis) (Darley, Aronson, & Brown, 1969; Yorkston, Beukelman & Bell, 1988). Darley, Aronson and Brown (1975) identified six subtypes of dysarthria based on a unitary classification scheme which focuses on the dysfunction of the muscles involved. The six subtypes include flaccid, spastic, ataxic, hypokinetic, hyperkinetic and mixed dysarthria. The  subtype of dysarthria will not be used as a criteria for participation in this investigation; severity of dysarthria will be a criteria for participation. We can assume that individuals with severe dysarthria will produce highly variable, unintelligible speech regardless of whether the respiratory, articulatory or phonatory system is most impaired. All speech systems will be affected to varying degrees when the level of impairment becomes severe. This investigation is designed to determine the control that an individual with severe dysarthria has over the parameters of frequency, intensity and duration of  vocalizations. This study is a series of case studies. Comparisons are not made between subjects. Therefore, each subject may have  a different dysarthria classification. 


Dysarthrias associated with cerebral palsy.  
  Cerebral palsy
 is a non-progressive motor disorder resulting from cerebral insult at or near the time of delivery. Diagnosis of cerebral palsy is primarily through clinical observation. Hallmarks of this disease are delayed developmental motor milestones and persistent primitive reflexes (Yorkston, Beukelman & Bell, 1988). Postural and movement impairments are common among individuals with cerebral palsy (Yorkston, Beukelman & Bell, 1988). Intellectual and cognitive limitations occur in 50-70% of individuals (Yorkston, Beukelman & Bell, 1988). Speech-language impairments are common in subtypes with bulbar involvement and involuntary movement. Reported incidence rates of dysarthria among this population vary from 31- 88% (Yorkston, Beukelman & Bell, 1988). Impairments of oral articulation, respiration and laryngeal and velopharyngeal function may be implicated to varying 

degrees
. Articulatory error patterns of individuals with spastic cerebral palsy, however, do not differ from individuals with athetoid cerebral palsy (Platt, Andrews, Young & Quinin, 1980;  Platt, Andrews & Howie, 1980). In addition, the authors reported that severely impaired speakers and mildly impaired speakers differed in degree of disability rather than quality. Reduced vowel articulatory space, poor anterior lingual accuracy for consonants and imprecise articulation for fricative (e.g., /f/, /s/) and affricate (e.g., /ch/) sounds were noted. Including individuals who have severe dysarthria due to cerebral palsy does not limit the finding of this study. Dysarthria resulting from cerebral palsy is not particularly different form dysarthria resulting from traumatic brain injury or stroke (Deller et al., 1991; Jayaram & Abdelahamied, 1995; Turner, Tjaden, Weismer, 1995). 


Need to determine the acoustic characteristics of severely dysarthric speech.     Existing literature focuses on the degradation of the clarity, flexibility and precision of dysarthric speech. Perceptual analysis of the speech characteristics of various types of dysarthria has been documented thoroughly (cf. Darley, Aronson, Brown, 1969; Rosenbeck & LaPointe, 1978). There is, however, a dearth of literature aimed at documenting the acoustic characteristics of  the residual speech channel of  individuals with severe dysarthria. Unintelligible speech may be consistent and discrete, thus recognizable by a speech recognition system (Ferrier et al., 1992). Acoustic analysis allows for degradation of a vocalization along specified parameters. Isolating those  parameters which are most amenable to manipulation by individuals with severe dysarthria is the first step toward using vocalizations as an input mode to control a computer based communication aid. 

Speech Recognition Technology

Speech recognition technology has been described in the literature since the early 1950’s . An analog computer was programmed to recognize ten English digits with 98% accuracy (David, Biddulph & Balashek, 1952 in Bergeron & Locke, 1990). Between 1960 and 1980 the technology was transferred from analog to digital computer systems (Bergeron & Locke, 1990). Currently, digital processing software and statistical algorithms comprise the hardware and software components of a speech recognition system (Ferrrier, Jarrell & Carpenter, 1992). It requires a voice card and a microphone to receive the input acoustic signal. Speech recognition software itself is referred to as a “transparent program” because it operates with other applications, like word processing programs. Rather than keystrokes, voice commands are used as the input. Typically, current commercial programs are capable of recognizing only discrete words. Emerging technology is aimed at accomplishing recognition of short phrases of connected speech as well. 

There are two types of speech recognition systems: static, speaker dependent systems
 and adaptive 

systems
. Most commercial speech recognition systems available today are adaptive systems.

Approaches to isolated word recognition.     Speech recognition is the process of decoding the transmitted speech signal and comparing it to a previous representation of speech. Bayesian decision theory
 is used to maximize recognition probability. Hidden Markov modeling (HMM)
 is one approach to isolated word recognition. HMM
 has been used to automatically model the enormous variability present in severely dysarthric speech (Deller, Hsu & Ferrier, 1991). To build a HMM recognizer, training data of spoken word tokens are presented to a computer. The computer then generates a model which is most likely to have generated all the data that was presented. Training data is used to set the HMM parameter probabilities for the different states in any given phoneme. Bayesian probabilities are used to decide whether the incoming speech token is likely to have been generated from the same HMM. 


Artificial neural networks (ANN) offer an alternative method of isolated word recognition. Jayaram and Abdelhamied (1995) support the use of ANN modeling techniques to capture the highly variable and inconsistent speech of individuals with severe dysarthria. Once trained, an ANN will attempt to classify new information into pre-defined categories
 (D. Roy, personal communication, March, 1997). ANN can be time consuming to build because internal parameters are adapted over time to maximize recognition performance (Jayaram and Abdelhamied, 1995). The more training data available to create the ANN, the greater the recognition accuracy for subsequent uses. 


Given that individuals with severe dysarthria produce vocalizations which are unintelligible and variable between repeated attempts, HMM or ANN techniques may be useful in the ultimate design of a vocalization recognizer. 

 Communication Theory

One can look at the basic unit of communication as information. Words are  special cases of information as are numbers. Information is the raw material which is coded and transmitted in the act of communication (Dretske, 1981). Communication (information) theory is the mathematical theory of information. It is a quantitative measure of how much available information can be transmitted from point A to B (Dretske, 1981). 

Individuals with severe speech impairments such as dysarthria have a compromised channel of communication. Most individuals have an ability to formulate ideas and are motivated to communicate. Most communication partners too are motivated to engage in conversation and comprehend the intended message. Slow, imprecise and variable speech imposes an information bottleneck, impeding efficient and effective communication. Communication theory applies to this investigation in that we are concerned with how much information we can transmit from the speaker to the listener despite the narrowed capacity of the channel of transmission.

The general formula to calculate the amount of information generated by the reduction of n possibilities to 1 is written:


I = log n 

where log is the logarithm to the base 2 (Dretske, 1981). Using binary decision, the amount of information required to narrow eight possibilities into one choice is 3 bits 
. Principles of information theory can be applied to determine the number of categories of frequency, intensity and duration are available for control by an individual with severe dysarthria. In the frequency domain for example, if we know the range of frequencies that a subject can produce, we can determine the number of categories that within that range that can be consistently produced. 


 Application of information theory is not novel to the field of AAC. Assistive interface technologies have attempted to improve information transfer for individuals who are non-speaking by increasing the number of input modes. For example, an individual may use the eyes, arm movements, facial expressions and head rotation to transmit information. Refining the signal to noise ratio along each of these dimensions has been well documented and serves to elicit a better response to the AAC user’s actions (Shein, Brownlow, Treviranus & Parnes, 1990). Shein et al. (1990), suggest that tomorrow’s access systems should aim to capture more of the information available to the user. Increasing information transfer can be a function of increasing the rate of 

transfer or the quantity of information transferred. Shein et al. (1990), state that non-speaking individuals are limited to marginal rates of accelerating communication. They support capturing a wider bandwidth of input channels by including multi-modal access modes such as gestures, limb movements and voice. 


This study is designed to determine whether information transfer can be improved in the acoustic domain. By testing the feasibility of controlling the parameters of frequency, intensity and duration, we can capture a wider bandwidth of acoustic signals. By testing whether the individual has at least two levels of control within any or each of the parameters of vocalization, we are addressing the issue of increasing the rate of information transfer. Our goal is to reduce the information bottleneck that exists for individuals with severe dysarthria and their communication partners.  

Literature Review
The underlying principle behind application of speech recognition technology to assistive devices is that human speech signals can be transformed electronically into effective actions (Noyes & Frankish,1992). Upon detection and recognition of a sound, equipment which is controlled by a recognition system can be programmed to carry out a predetermined activity or function (Noyes & Frankish,1992). The applications of speech recognition technology may include computer control as well as environmental controls such as operating appliances. Although individuals with speech impairments have reduced speech intelligibility, their speech may still be consistent (Fried-Oken,1985). Machine recognition of speech is dependent on establishing a pattern-match between the incoming signal and pre-stored templates (Noyes & Frankish, 1992). Speech recognition, therefore, may serve as a potentially viable alternative access mode for individuals with consistent but unintelligible speech.

Application of Speech Recognition to Individuals with Motor and Speech Impairments

The keyboard is the most common method of computer access (Kotler & Thomas-Stonell, 1997). Individuals with physical disabilities are able to access and control a computer through various interface adaptations. Some alternative interfaces include mechanical joysticks, sip and puff switches, touch sensitive buttons, optical head pointers and scanning devices (Fried-Oken, 1985). Speech recognition has the potential to serve as yet another interface which allows the hands and limbs to be free and encourages face to face communication. 

Speech recognition technology has numerous applications for individuals who are unable to access a keyboard due to motoric limitations. Less obvious are the applications of this technology to individuals with motor problems and reduced speech intelligibility due to dysarthria. Theoretically, the assumption is that consistency of speech supersedes the issue of intelligibility (Fried-Oken, 1985). A number of researchers have grasped this basic premise in attempts to apply speech recognition technology individuals with motor impairments and mild-moderate dysarthria (cf. Fried-Oken, 1985;  Ferrier, Jarrell, & Carpenter, 1992).

Englehardt, Awad, Van der Loos, Boonzaier and Leifer (1984) outline a number of advantages for individuals with disabilities to use speech recognition technology. In the case of individuals with spinal cord injuries, spoken language may be one of the only remaining means of communication. For those with physical disabilities and impaired speech, the use of speech recognition would free the hands and eyes for other uses. Noyes and Frankish (1992) acknowledge that applying speech recognition to individuals with speech impairments would encourage and enhance human to human communication. At present, AAC users typically engage in little eye contact which limits face to face communication.

 Preference for speech as an input mode.     Many individuals with physical and/or speech disabilities, are highly motivated to learn to use speech recognition technology (Fried-Oken, 1985; Noyes & Frankish, 1992). Fried-Oken (1985) reported a case study of an individual with motor impairment due to a spinal cord injury and mild flaccid dysarthria. IntroVoice
, a commercial static speech recognition system was recommended as an interface for personal computer control. A vocabulary of 38 words consisting of computer commands, aeronautic codes used for alphanumeric symbols, and eight difficult to pronounce words was used during the training phase. Following training, reliability of the speech recognition system was tested  in various activities. The first activity of orally spelling a list of 395 words (500 vocal productions) using the alphanumeric code resulted in 79% recognition accuracy. A computer game was then designed which used minimal pair
 words and difficult to pronounce words as targets. In 90 productions, he was 96 % accurate. Fried-Oken reported improved articulatory precision as well as increased sustained attention during sessions. Similar improvements in motivation to continue to learn and use the system were also reported for another subject although he achieved markedly lower recognition accuracy rates ranging between 40-60%. Fried-Oken concluded that individuals capable of producing consistent and distinct vocalizations can benefit from using speech recognition as an alternative interface. She reported that although voice activated keyboard control may be more time consuming than manual control for non-impaired individuals, rates of keyboard entry may be improved for individuals who access the keyboard using a mouth stick or scanning device.  
Treviranus, Shein, Haataja, Parnes & Milner (1992) compared two access techniques: traditional scanning and scanning combined with speech recognition. They reported that seven of  their eight subjects who were severely physically disabled and functionally non-speaking preferred speech recognition and scanning modes in combination compared to scanning alone. The authors inferred that the preference for speech may be due to increased rate of communication and reduced physical fatigue when using speech as an augmentative input mode. 


Haigh and Clarke (1988) developed VADAS ECU
 (Voice Activated Domestic Appliance System, Environmental Control Unit), a speaker dependent isolate word recognizer which was capable of switching on and off up to 16 household appliances. Over a 6 week period 29 individuals with disabilities were invited to participate in home trials. Although misrecognitions were reported as concerns, the authors reported that many individuals preferred speech input as a method of interacting with their environment. 

Speech recognition systems outperform human listeners.     Carlson and Berstein (1987) reported results from 46 individuals of various etiologies (primarily hearing impaired and cerebral palsy) using a template-based isolated word speech recognizer
. Subjects trained the system to recognize 300 isolated words during the training phase. During a second session, the same 300 words were produced again. In addition, a 65 word story containing words only from the 300 word vocabulary was also produced. Recordings from this session were compared to the training templates and the closest matches were utilized to calculate the percentage of correctly recognized words for the speech recognition system. For each subject, human intelligibility judgments were also made based on the perceptions of six listeners, using data from the second session. A comparison of machine recognition accuracy and human listener recognition accuracy was undertaken. Isolated words produced by 35 of 46 individuals with speech impairments were better recognized by the speech recognition system compared to human listeners. When the words were spoken in meaningful context, however, 34 of 46 speakers were better recognized by human listeners. The speech recognition system utilizes the acoustic pattern where only consistency and distinctness of the signal are important. The factors influencing human perception of impaired speech however are far more complex. These findings support the notion that speech recognition may be a viable input for AAC systems, at least for isolated word recognition. 


Stevens and Bernstein (1985) compared the recognition accuracy of a speaker dependent recognition system
 to that of human listeners. Five hearing impaired individuals, only two of whom used speech for daily communication, produced a list of 40 words. Recognition accuracy for the speech recognition system was reportedly between 75-99 %. Four of the five subjects were also judged by human listeners using the same vocabulary. The speech recognition system outperformed the human listeners by levels greater than 60%. The authors reported that untrained human listeners were sometimes unable to detect utterances despite consistent production. 


 Improved rate of input using speech recognition.     Vandelheiden (1985) reported that users of scanning based computer input methods were able to create text at a rate of six or less words per minute. Even when rate enhancement techniques such as abbreviation expansion and letter or word prediction are used with direct selection or scanning, access is still slow and requires considerable physical effort (Shane & Roberts, 1989).  


Treviranus et al (1992) reported that a hybrid input method consisting of a combination of scanning and speech recognition increased rate of computer input compared to scanning alone for 8 individuals with severe physical disabilities who were functionally non-speaking. Differences between the two conditions in accuracy of input however, were not significant. The authors supported using a hybrid input method to improve rate of access. They also claimed that speech recognition was not very effective as the primary mode of access for individuals with very limited speech. Perhaps when encoding strategies are used to combine vocalizations, even those individuals with very limited speech can benefit from a multi-modal interface which includes speech recognition.
Dabbagh and Damper (1985) investigated the use of speech input techniques for composing and editing text produced by individuals with physical disabilities. Initial work showed that text composition where letters or words were selected directly resulted in faster data entry time compared to when encoded letter sequences were used to compose text. The authors support the notion that with practice encoding strategies used with speech recognition would improve rate of text composition. 

Ferrier, Jarrell, and Carpenter (1992) reported a case study of an adult male with mild-moderate dysarthria who was trained to use the DragonDictate
 speech recognition system. DragonDictate is a speaker-independent adaptive system. Four additional speakers without speech impairments also participated in the study. The subject with dysarthria achieved 80-90% recognition accuracy by the second session. Compared to normal speakers, the subject demonstrated greater variability in rate and accuracy of text creation between sessions using speech recognition versus a standard keyboard. Oral typing using DragonDictate was twice as fast as manual typing for this speaker. The authors concluded that the DragonDictate system was an appropriate writing aid for individuals with mildly to moderately unintelligible speech.

It is plausible that combining rate enhancement strategies such as first letter encoding or word prediction with speech recognition could further accelerate rate of written communication. Rate enhancement strategies require fewer vocal commands to produce the same amount of text thereby reducing the possibility for producing recognition errors. These strategies could potentially improve rate of input and reduce vocal fatigue. Improvements in rate of input and reduced fatigue may translate into greater communicative interactions, a larger number of communication partners, fewer demands on these communication partners, and greater educational and vocational opportunities for users. Individuals with physical and speech impairments have numerous environmental barriers that limit their ability to function independently, access available services and programs, and enjoy complete and fulfilling communication interactions. It is worthwhile to investigate how technology can be used as a tool to eliminate such barriers given that maladaptive environments have the potential to turn an impairment into a disability (Quintin, Halan, & Abdelhamied, 1991). Empowering individuals with physical disabilities and speech impairments with a mode of access that is natural, potentially more time efficient and compatible with technological advances has important implications on quality of communication exchanges .
Recognition accuracy is correlated to speech sound intelligibility.     Ferrier, Shane, Ballard, Carpenter and Benoit (1995) correlated speech sound intelligibility factors of individuals with dysarthria with the time required to reach 80% recognition accuracy using DragonDictate (version 1.01A)
. Positive correlations were reported between the total number of voice features present in the user’s speech and the level of recognition accuracy. The greater the frequency of pauses, the greater the number of repetitions required to reach 80 % recognition accuracy. Compared to speakers with high speech intelligibility, speakers with low intelligibility showed greater variability on word recognition between dictations. It appeared that some individuals with dysarthria would clearly benefit from using speech recognition as an input than others.
Improved recognition accuracy provided sufficient training.     Schmitt and Tobias (1986) used the IntroVoice II
 speaker-dependent speech recognition system with a 18-year old girl with severe physical disabilities, visual impairment and semi-intelligible speech. Ten isolated words were spoken three times each during three training sessions. Recognition accuracy improved from 40% in the first session to 60% in the last session. Improvement in her speech sound intelligibility following several weeks of practice using the speech recognition system was an unanticipated benefit. She enunciated her productions more clearly and only produced words when she had adequate breath support.

Kotler and Thomas-Stonell (1997) demonstrated that speech training with a young man with mild dysarthric speech resulted in a 57% reduction in recognition errors using IBM VoiceType 
(version 1.00). The authors also provide a clinical definition for stability of recognition accuracy as a measure to screen which users would likely benefit from speech training. Results indicted that speech training was more effective in reducing initial consonant-null errors than final consonant stop and nasal place errors. The authors suggest that speech recognition may be beneficial to individuals who use slow and potentially laborious methods for written communication (e.g., scanning) and those individuals who fatigue quickly or experience pain when using traditional adaptive access methods. 

Application of Speech Recognition to Individuals with Severe Speech Impairment
Treviranus et al. (1991) state that presently available speech recognition systems do not adequately accommodate users with limited, non-normative speech. Individuals with severe dysarthria may not expect much gain in communication efficiency from commercially available speech recognition systems. Other researchers have also accepted the limitations of applying commercially available systems to individuals with severe dysarthria (Deller et al., 1991; Jayaram & Abdelhamied, 1995). 

There is a paucity of clinical studies that explain how human listeners understand dysarthric speech. Familiar communication partners of individuals with severely impaired speech can frequently understand vocalizations which may be unintelligible to unfamiliar listeners. Researchers who attempt to model speech recognition systems for individuals with severe speech impairment postulate two perceptual tools that familiar listeners may be using. They may be selectively attending to consistently pronounced phonemes or using contextual cues efficiently.

Preference for speech despite severely impaired speech intelligibility.     Deller, Hsu and Ferrier (1991) found that many individuals who have severe dysarthria and use AAC have normal or exceptional intellects, reading skills and language skills and would prefer to use their residual speech capabilities despite its limitations. The authors designed an automatic speech recognizer based on HMM principles to test the premise that recognizable acoustic information exists even in the speech of individuals with severe dysarthria.

Development of new technology to meet the needs of individuals with severe impairments.
Deller et al. (1991) reported using a hidden Markov model approach to isolated word recognition for individuals with severe dysarthria secondary to cerebral palsy. The authors emphasize that there is nothing specific about dysarthria resulting from cerebral palsy as opposed to traumatic brain injury or amyotrophic lateral sclerosis. Dysarthric speech, however, is distinctly different from normal speech and requires new approaches and models to utilize speech recognition technology.  The authors compared two different HMM model structures, ergodic and Bakis
. Two vocabulary sets W-10 and W-196 were used to test the HMM recognition for the subject. W-10 consisted of ten digits. The second set W-196 consisted of 196 commonly used English words. Five repetitions of each word in W-10 and W-196 were used as training data and an additional five repetitions of each list were used as testing data. Contrary to results for non-impaired speakers, overall recognition rates using the ergodic model were better than with the Bakis model for individual with severe dysarthria. 

Deller et al. (1991) also employed signal preprocessing techniques to further improve recognition accuracy. They reported that similar to vowels, “steady-state” phonemes are physically easier to produce since they do not require dynamic movement of the vocal tract. Conversely, individuals with dysarthria have more difficulty with phonetic transitions since they require fine motor control of articulators (Doyle, Raade, St. Pierre & Desai, 1995). Under the premise that acoustic transition in dysarthric speech are highly variable and likely do not transmit useful information, automated transition clipping was employed. Transition clipping improved overall recognition compared to with signal preprocessing. The authors emphasize the that speech recognition of individuals with severe dysarthria requires a technique which is robust to extreme variability and very little training data due to fatigue factors. Deller et al. claim that although speech may not be recognizable to a sufficient degree, it has the potential to be a useful input either for a “stand-alone” speech recognition system or within an assistive device with multiple access modes.  


Jayaram and Abdelhamied (1995) investigated recognition of dysarthric speech using ANN. Two multi-layered neural networks were developed. One network was based on fast Fourier transform coefficients as inputs and the other used formant frequencies as inputs. The performance of the system was trained and tested using isolated words spoken by an adult male with cerebral palsy. He used direct manual selection to operate his VOCA
 and  his speech sound intelligibility was 10-20 % for unfamiliar listeners. Machine recognition rates using the two neural networks and  IntroVoice
 a commercial speech recognition system, were compared to speech intelligibility ratings obtained from five human listeners. Results indicated that the neural networks were able to recognize dysarthric speech despite large variability in the speech productions. The performance of the networks was superior to both human listeners and the IntroVoice system. The network which used fast Fourier transform coefficients was more effective than using formant frequencies. Approximately 18 tokens of each word were required to yield optimal recognition rates. 

Research Questions

1a) 
Can individuals with severe dysarthria consistently produce vocalizations that differ by two 

or more separate and distinct levels of frequency (pitch)?

 b)
Can individuals with severe dysarthria consistently produce vocalizations that differ by two

or more separate and distinct levels of intensity (loudness)? 

 c)
Can individuals with severe dysarthria consistently produce vocalizations that differ by two

or more separate and distinct levels of duration? 

2.
Can individuals produce distinct levels with a sufficient consistency at a later time?


The number of distinct categories in each parameter.
     An operational definition of distinct levels is required. Along a continuous parameter (frequency, intensity, or duration), an individual may be able to produce three different categories of vocalizations. For example, in pitch, the subject may be able to produce low, medium and high sounds. The subject is not a perfectly calibrated instrument for producing pitch. Therefore, errors of production will occur. Each category, low, medium and high will have a distribution with a mean and standard deviation about that mean. We can determine the lower and upper limits of the 95% confidence intervals around the mean for each stimulus level requested. These confidence limits form the boundaries of the “distinct” levels within 

each parameter. The 95% confidence limits for two adjacent “distinct levels” cannot overlap
. It is important to set the criteria of distinct levels relatively high, in order to reduce the possibility of recognition errors when the vocalizations are in fact used to control keys or functions on a keyboard. Vocalizations which are not sufficiently distinct could impede communication efficiency. Increased error rates may also lead to increased vocal fatigue and frustration.

Determining whether an individual can control at least two distinct levels of frequency, intensity and duration will identify the parameters available for manipulation by the individual when using a vocalization recognizer. For example, if a subject produces highly variable and inconsistent levels of pitch such that there is only one broad level of pitch that can be identified, then pitch is not a useful differentiating parameter for that individual’s vocalization recognizer. To use a parameter for coding vocalizations, at least two distinct levels of that parameter are required. These vocalizations will represent symbols on a computer aided assistive devise or VOCA.

Eventually, a vocalization recognizer may be designed to specifically attend to those parameters that are most consistently controlled volitionally. Each distinct vocalization or combination of vocalizations can be mapped to a specified symbol on the VOCA keyboard/overlay. An array of up to 64 keys can be represented by combining a string of two vocalizations that represent one keyboard symbol. For example, to code 64 keys, an individual must be able to produce two phonetically distinct vocalizations, and control two acoustic parameters (i.e. loudness and duration) at two distinct levels each (i.e. loud, soft and long, short) (Appendix A). This example suggests the possibility of using only a few distinct vocalizations to a VOCA that is interfaced with a vocalization recognition system. The transparency overlay represents the keys that the individual sees on the VOCA display. The coded sheet underneath contains the vocalizations strings to activate each key
. 

If the individual is not capable of producing enough vocalizations to control the entire keyboard through vocalizations, it may still be possible that a small set of commonly used keys or functions can be  programmed to be activated using vocalizations. For example, to increase efficiency of communication, a vocalization recognizer may be used to scan only quadrants of the keyboard. To simulate natural communication, multi-modal access systems make use of all available signals which an individual can produce. 

Ensuring consistency of producing distinct levels between sessions.     Individuals must be able to produce the same distinct levels of frequency, intensity and duration between session one and session two. Vocalizations must be consistent between sessions because distinct categories will eventually be used as switches to control keyboard functions. There is of course a certain level of acceptable error between sessions. Consistency of productions between sessions essentially translates into recognition accuracy rates. Recognition accuracy rates of approximately 80% have been reported with the use of  non-commercial systems by individuals with severe dysarthria (Deller et al., 1991; Jayaram & Abdelhamied, 1995). There is evidence that recognition accuracy can be improved with time through practice (Ferrier et al, 1992; Kotler & Thomas-Stonell, 1997). Given that subjects in this investigation will not receive practice or training to improve accuracy of productions, 80% consistency of productions between sessions will be deemed as acceptable.

Hypotheses

1a)
Participants with severe dysarthria will be able to consistently produce at least two

acoustically distinct and statistically non-overlapping levels of frequency. 

1b)
Participants with severe dysarthria will be able to consistently produce at least two

acoustically distinct and statistically non-overlapping levels of intensity. 

1c)
Participants with severe dysarthria will be able to consistently produce at least two

acoustically distinct and statistically non-overlapping levels of duration. 

2)
Participants will be able to reproduce the acoustically distinct levels of each parameter at a

later time with at least 80% consistency. 

Speech recognition technology has important implications for individuals who are not able to make themselves understood in at least some situations that are important to them. Individuals with compromised motor functioning and some speech impairments, benefit from utilizing speech recognition to access and control the computer (Doyle, Leeper, Kotler, Thomas-Stonell, Dylke, O'Neil, & Rolls, 1993; Ferrier et al., 1992; Kotler & Thomas-Stonell, 1993). Speech recognition may serve as an alternative mode of access and control for an AAC system. Bunnell, Polikoff and Peters (1990) suggested that for individuals with at least marginal speech intelligibility, a speech driven AAC device may be more efficient and easier to use than a manually operated device.

Given highly variable phonetic parameters in the speech of individuals with severe dysarthria, the challenge remains in achieving adequate recognition rates (Deller et al., 1991; Doyle et al., 1993; Jayaram & Abdelhamied, 1995). Perhaps new and innovative modeling techniques can be applied to the vocalizations produced by individuals with severe dysarthria. A rigorous investigation of the acoustic parameters which an individual is able to manipulate may be fruitful in determining specifications for a vocalization recognizer designed for individuals with severe speech impairments. It is postulated that frequency, intensity and duration are basic acoustic dimensions by which the incoming signal can be analyzed. This investigation aims to determine whether individuals with severe dysarthria can consistently control the frequency, intensity and/or duration of steady vowel productions in at least two distinct levels. 

Pilot Research


A series of pilot experiments were conducted between November 1996 and July 1997, prior to establishing the current experimental procedure. There were two phases to the pilot research. The first entailed clinical application of DragonDictate (version 2.51)
, a commercial, adaptive speech recognition system for individuals with severe dysarthria. Theoretical assumptions
 made when applying DragonDictate were challenged by actual findings from two adult male volunteers with cerebral palsy and severe dysarthria. Conducting pilot experiments helped to understand the technology and identify the limitations of current commercial software. This provided the impetus to  address the issue of using voice as an interface once acoustic characteristics
 which could be controlled consistently could be identified. The current investigation is aimed at determining the ability of individuals with severe dysarthria to control basic acoustic parameters. 
Phase I-Applying Commercially Available Technology to Individuals with Severe Dysarthria 

The initial study in November 1996 was a comparison of encoded message construction using speech recognition and direct manual selection. DragonDictate (version 2.51) was the speech recognition system used because other researchers and clinicians had used this software with individuals with mild-moderate dysarthria (cf. Ferrier et al., 1992; Kotler & Thomas-Stonell, personal communication, April 1995). Although the subjects in this study were severely impaired, the literature emphasized that the primary requirement for applying speech recognition was consistency of productions rather than clarity. 

A comparison between rate and accuracy of message construction using speech recognition and direct manual selection was undertaken to determine the benefit of using speech as an alternative interface, even for those individuals with severe dysarthria. Most AAC users struggle with two main issues. Their rate of communication is markedly slower than non-impaired individuals, and their mode of communication is not as natural as speech. The use of encoding strategies with speech recognition was hypothesized to increase rate of communication and reduce the possibility of vocal fatigue when operating a speech recognition system. The assumption was that individuals with only a few vocalizations could use various vocalizations in combination to access the 26 letter keys as well as a small group of function keys to dictate messages encoded by a three letter string. Only six vocalizations were required to map 36 keys if a each key was represented by a string of two vocalizations. Therefore, to produce a message encoded by three letters, an individual would have to produce three, two-vocalization combinations in a row. Rate of message construction using voice was compared to that using direct manual selection. Accuracy for message construction was also compared between the two conditions. 

A simulated experiment
 was conducted by Sarah Green, an undergraduate student at the University of Toronto who was interested in doing a research project in the area of speech recognition. She used the same experimental procedure as described above, testing three adult males. All three subjects had faster rates of message construction using speech recognition in session two compared to session one. In session one, rate of message construction using speech recognition was slower than direct selection. For one of the three subjects, however, session two of speech recognition was faster than session one and two of direct selection. Accuracy of message construction using speech recognition improved from session one to session two. Improvements in accuracy using speech recognition were greater than that using direct selection. 

Using DragonDictate.     DragonDictate(version 2.51) is an adaptive speech recognition system with a vocabulary of 30,000 words. It requires that the speaker produce isolated words. For a given utterance, a list of ten most likely words are displayed in a choice menu. The most probable word appears as choice one and is transcribed on the screen. If an error in recognition is made, the speaker either chooses a word from the ten choices or repeats the intended word.

There were a number of problems that arose when attempting to use DragonDictate with our two volunteer subjects with severe dysarthria and variable speech. During the 20 minute training phase required to create a user file, many words needed to be simplified. Some words and command phrases needed to be retrained several times, even following the initial training session. The interval between training tokens was too short for these subjects. Often, the system prematurely sampled the next token in the sequence before the subject had completed the previous utterance. Instead of asking subjects to produce the traditional aeronautical alphabet, arbitrary words which were salient to the speaker and easier to pronounce, were used to represent the letters of the alphabet. For example, for the letter “a” (alpha), the subject may have trained the word “apple”. It was assumed that the letter “a” would appear on the computer screen each time the subject produced his/her version of the word “apple”, as long as the productions were consistent. Over three sessions, both speakers achieved less than 20% accuracy for a list of the ten most frequently used letters in English. Each letter was repeated at least 10 times. Subjects experienced frustration and fatigue. Given the fact that subjects could not achieve acceptable levels of consistency and accuracy over repeated trials, the experiment was terminated. In addition, Dragon Systems provided little in terms of technical support. Changing specifications such as sampling time, inter-stimulus interval, and amplitude calibration were not intuitive, nor were they outlined in the manuals. It was felt that modifications of the software specifications needed to be systematic rather than by trial and error. This was difficult without the cooperation of the manufacturers. 

Phase II-Need to Investigate Acoustic Parameters Under Volitional Control

An alternative to applying commercial speech recognition technology was to identify characteristics of the acoustic speech signal produced by individuals with severe dysarthria, and use this knowledge to build a system which would recognize unintelligible vocalizations. An investigation aimed at isolating acoustic parameters which are most consistently controlled by individuals with severe dysarthria was undertaken.

Determining parameters to investigate.     Most current speech recognition systems have explicit algorithms which factor out variations in pitch, intensity and duration (D. Roy, personal communication, June 1997). They assume that pitch, loudness and duration do not carry any linguistically salient information. In the case of pitch, cepstral coefficients
 are extracted from the incoming waveform. Automatic gain control normalizes loudness of the incoming signal. When  two productions of the same word vary in duration, dynamic time warping allows both productions to be accepted as the same word. 

In contrast to a speech recognition system which attends to the phonetic aspect of the incoming speech signal, a vocalization recognizer could potentially make use of information which varies in pitch, loudness and/or duration. We know that individuals with severe speech impairments have highly variable speech production which impedes speech recognition (Dabbagh & Damper, 1985). Control of non-linguistic, supersegmental features such as pitch, loudness and duration may allow for a vocalization-input-digitized-speech-output communication aid.

The parameters of frequency, intensity and duration were chosen because they are basic and objective measures of the acoustic output. These parameters also have corresponding perceptual concepts: pitch, loudness and speaker rate, respectively.  For each vocalization produced, an average measure of frequency, intensity and duration could be calculated. Standard deviations of frequency and intensity could also be calculated to address the issue of variable speech patterns. Initially, several small pilot studies called “fishing protocols” were set up to determine which parameter would be most likely to be controlled consistently and efficiently by individuals with severe dysarthria. 

Fishing trips for frequency, intensity and duration.     The fishing trips (Appendix B)
 were conducted with the same two adult males as in the November studies. Briefly, a subject was asked to produce any sound he could at a comfortable pitch. Then he was asked to try to make his highest pitch. The subject then produced his lowest pitch. Auditory models were provided if required. The individual received graphical and numerical feedback via an instrument called the Visi-Pitch
. Data collection was arbitrary and the procedure was not systematic. One subject was able to control his pitch, duration and to a lesser degree, loudness. The other subject however, had specific difficulty with pitch. A consistent and objective experimental procedure was required to determine control of frequency, intensity and duration of vocalizations produced by individuals with severe dysarthria. 


Refining experimental protocol.     Since May, 1997 the experimental procedure has been refined considerably following several experiment simulations. Some of the modifications include: conducting the entire experiment in a sound treated room, ensuring constant head to microphone distance by using a head set microphone, providing graphical feedback to the subjects via the Visi-Pitch, and collecting a larger set of data in the same time limit. The vocal production task has been refined from just asking the individual to make “any sound” to specifying a target vowel. Clinical observation suggests that individuals with severe dysarthria require an articulatory target (Shein and Kotler, personal communication, March 1997). The four cardinal vowels (/a, i, u, o/ ) were chosen because they are produced at the extreme corners of the oral vocal tract making them maximally distinguishable from one another. The current protocol uses only two vowels /a/ and /i/. The use of two vowels will allow us to collect a greater sample of data for analysis while still being able to generalize the results to more than just one phoneme. 

A stimulus-response paradigm has been introduced to increase the objectivity of the design and allows for a more systematic investigation of vocalization control in frequency, intensity and duration. A subject is asked to produce a vocalization which corresponds to a specific stimulus. For example, in the pitch protocol, stimuli 1, 2, and 3 correspond to low, medium and high pitch, respectively. Requesting three stimulus levels was a decision based on another pilot experiment. In that experiment a volunteer subject with severe dysarthria was asked to produce seven different categories of pitch, loudness and duration. Even when provided with auditory models
, the subject had difficulty producing seven distinct levels. The experiment was replicated on a non-impaired adult male. He was able to produce between four to five distinct levels of pitch and loudness. During a second session, however, he had forgotten the different levels he had produced in the first session. Memory of pitch and loudness confounded the ability to produce more than a few categories of pitch and loudness. 

This investigation is concerned with control of keyboard functions using specific acoustic parameters. Therefore,  memory load should be kept at a minimal. Requesting three stimulus levels generates sufficient data to determine whether at least two distinct levels exist in each parameter. We know that having two distinct levels of pitch will double the number of vocalizations that can be used to represent keys or functions. Any further increase in the number of levels would exponentially increase the available vocalizations. Widening the information channel through control of intensity and duration would further increase the number of available vocalizations. 

The current procedure generates a greater amount of data from the subject than previously. The use of a time-frequency and time-amplitude display provides consistent visual feedback. Visual guides are placed directly on the computer screen to set targets for the subjects to reach. A short systematic training phase allows the individual to calibrate the vocal system and to become comfortable with the task. Once the subject feels comfortable with the task, the investigator calls out a number (1, 2 or 3) and the subject attempts to produce the corresponding sound. The present procedure requires approximately 10 minutes per protocol to collect the experimental data. Each training/calibration session takes approximately 2-5 minutes. Periods of vocal rest are provided as required. A second session has also been introduced in the new procedure. In this session, we attempt to address the issue of consistency of productions between sessions. 

Method

Participants
Eight individuals
 above 18 years of age will participate in this investigation. Individuals with physical disability and severe dysarthria secondary to congenital neurological insult or a primary diagnosis of cerebral palsy, will be selected to participate in this investigation. The speech of individuals with severe dysarthria due to cerebral palsy is representative of other individuals with severe dysarthria due to different etiologies (i.e. traumatic brain injury, stroke and multiple sclerosis) (Deller et al., 1991; Jayaram & Abdelhamied, 1995). Individuals with severe dysarthria secondary to cerebral palsy typically present with highly variable speech. This poses a challenge to the technology and a stringent test as to whether speech/vocalization recognition is an effectual application for individuals with severe dysarthria. 

Subjects will be recruited from speech and language clinics in the Greater Toronto Area. Department heads and clinicians will be informed about the experimental protocol through research forums and personal communication. Potential subjects will first be approached by their clinician to obtain permission to be contacted by the investigator. A list of individuals who are interested in participating will be forwarded to the investigator. The investigator will contact potential participants by telephone or through email
. A complete verbal explanation of the experimental procedures will be provided on the telephone. Those individuals who express interest will be sent a copy of the “Information Sheet for Subjects”(Appendix C) and asked to contact the investigator after reading the written material to confirm participation in the investigation. All participants who meet the selection criteria for the investigation and are interested in participating will be asked to provide written consent (Appendix D) as specified by Guidelines on the Use of Human Subjects of the University of Toronto. Only those individuals capable of fully and freely consenting will be included. Participants will be informed that they may withdraw from participation in the experiment at any time without penalty. When grant monies are available, each subject will be equally compensated in the form of an honorarium for their contribution of time.

Subjects will meet the following criteria: 

1.  dysarthria is the primary speech diagnosis 

2.  severity of dysarthria requires the use of AAC for daily communication

3.  grossly adequate cognitive skills to understand the experimental tasks

4.  adequate hearing function to pass an audiometric screening evaluation

5.  reportedly adequate visual function to see a graphical oscilloscope display from a distance of 30 cm or greater

The primary speech diagnosis and level of severity will be determined from review of medical/speech language pathology reports. If formal assessment reports are not available, the researcher, a registered speech-language pathologist, will perform an oral peripheral examination followed by the verbal and nonverbal sections of the Mayo Clinic Motor Speech Examination
. Some individuals with dysarthria may also have other speech and language impairments. In this experiment it is essential that dysarthria is the primary diagnosis. We are interested in control of acoustic parameters of speech due to a disorder of speech execution. Disorders of motor programming or planning are not under investigation. When other speech-language impairments co-occur within a potential subject, the investigator, a registered speech-language pathologist will decide whether dysarthria is the primary diagnosis and that all other subject selection criteria are satisfied. The opinion of an unfamiliar speech-language pathologist will be sought if there are any outstanding concerns.

For the purpose of this investigation, severe dysarthria is operationally defined as a motor speech disorder where slow, weak, imprecise and/or uncoordinated movements of the speech sound musculature renders speech ineffective for the purpose of daily communication. The Assessment of Intelligibility of Dysarthric Speakers
 will be administered if there is ambiguity in the severity level determined by the clinical operational definition.


Adequate cognitive functioning will be judged by ability to understand the experimental task. The experiment requires that the subject understand the following concepts: vocalization, pitch, loudness, length of vocalization, high, low, medium, loud, soft, long and short. Verbal explanations and models will be provided to clarify terminology when required. Subjects who are unable to understand the concepts will not continue with the investigation. 


Adequate hearing functioning is required to hear the instructions of the experiment and hear the investigator during the experiment. In addition, adequate hearing is required for monitoring self productions. An audiometric screen will be performed in the sound treated booth prior to commencing the experiment. Subjects must have hearing thresholds below 25 dB HL for the three speech frequencies (500, 1000 and 2000 Hz) (Kaplan, Gladstone and Llyod, 1993). 


Adequate visual function is required to see the Visi-Pitch display for feedback during the experiment. Subjects will be asked whether the visual display can be viewed adequately from their seat. Verbal report will be accepted as an indicator of adequate functioning. 

Materials and Apparatus


For each protocol, a list of 51 randomly generated numbers from one to three will be used to request vocalizations (Appendix E). The order of presentation of protocols will be counterbalanced within the subject and between subjects (Appendix F). Pilot research indicated that alternating both the target vowel and the acoustic parameter was too confusing. For each parameter, data from both vowels will be collected before changing to the next parameter. For each subject, a separate data collection spreadsheet with 51 trials will be required for each vowel and each parameter. 

All sessions will be videotaped using the Pansonic ® AF Piezo VHS Reporter on 6 hour extended playback Sony ® videotapes. The experimental protocols will also be audio-taped using the Sony ® Digital Audiorecorder (Model PCM-2300) on 90 minute Sony ® digital audio-tapes (DAT). The Shure ® professional unidirectional head-worn dynamic microphone (Model SM10A) will be directly connected to the digital audio-recorder. Two audio-tapes of sample productions of pitch, loudness and duration will be made using a non-impaired male and a non-impaired female volunteer. These samples will be played on the Sony ® TCM-5000EV audio tape-recorder.
The Visi-Pitch 
 stand-alone system will be used to provide visual feedback to the subjects during the experiment. A graphical oscilloscopic display will allow subjects to monitor their own productions. The Computerized Speech Lab (CSL)
 will be used for off-line acoustic analyses of  vocalizations recorded on the DAT. The Statistical Application Software (SAS) (Version 6.11)
 will be used to perform statistical analyses.

Procedure 

To ensure controlled experimental conditions, collection of speech samples for acoustic analyses will take place in a sound treated, comfortable, adult-appropriate, wheelchair accessible audiometric booth at the University of Toronto, Department of Speech-Language Pathology (Figure 1).

At the first data collection session, verbal instructions will be provided about the experiment. The subject will be encouraged to ask questions and raise concerns. Once  questions and concerns have been satisfactorily addressed, the  subject will be asked to sign the Subject Consent Form. 

A pure tone  audiometric screening evaluation using the GSI 10 Audiometer
 will be completed in the sound treated booth. The three speech frequencies, 500, 1000 and 2000 Hz will be tested
. The subject will be allowed to continue with the experiment if the mean hearing threshold is below 25 dB in at least one ear. Adequate vision to view the Visi-Pitch display will be determined based on subject report. 

The head-worn microphone will be placed and adjusted. A mouth-to-microphone distance of 2 cm will be measured from the left hand corner of the mouth
. The videotape recorder will then be turned on. A description of the pitch protocol is described below. The loudness and duration protocols are essentially identical and have not been described here for the purpose of brevity.

“Today, we will be collecting data on six small experiments that make up this investigation. You will have a 15 minute break after the third experiment. You may also ask to take a break any time you feel tired. We are interested in how well you can control the pitch, loudness and length of your vocalizations. We will be asking you to produce the vowels /a/ and /i/. In a moment I will play you a tape with someone saying these two sounds. Remember that your productions may not sound like the person you hear on the tape. (Play the audio-tape which corresponds to the gender of the subject). Try making the /a/ sound. (Allow the subject to practice making the sound). Now try making the /i/ sound. (Allow the subject to practice making the sound). Now we can begin the first experiment. In this part of the study, you will be making the /a/ sound at different pitch levels. You will be asked to make a high pitched /a/, a medium pitched /a/ and a low pitched /a/. You may not be able to make all three pitch levels. Just try your best. I am going to play a tape to show you what I mean by high, medium and low pitch. (Play the audio-tape which corresponds to the gender of the subject). In a moment you will have a chance to practice. Before you start I want to explain what this machine in front of you is for. It is called the Visi-Pitch. It allows you to see your production on the screen. I am going to set it for pitch. When I make a high pitched sound, the line drawn will be high on the screen. (Provide a demonstration and show that the signal is recorded high on the screen). When I make a low pitched sound, the line is lower on the screen. (Provide a demonstration and show that the signal is recorded low on the screen). If you understand the task we will start. (Questions will be answered). 

Let us start by producing your highest pitch /a/. (Use the visual display to provide feedback). See if you can go any higher. (Allow time for subject to determine an internal calibration for vocalization pitch. Allow up to 5 trials). I am going to mark your high pitch by this sticker (Use a small circular colored sticker to mark the subject’s high pitch production). Now, try making your lowest pitch /a/. Remember it will be lower on the screen. (Use the visual display to provide feedback). See if you can go any lower. (Allow the subject to practice up to 5 trials). I am going to label your low pitch with another sticker. (Repeat for medium pitch). 

I am going to put a number on each of these stickers. I will label the your high pitch number three. Your medium pitch is number two and your low pitch is number one. (Label each sticker with the appropriate numbers). Now I am going to give you a chance to practice what we will be doing in the experiment. I am going to call out a number from one to three. When I do, I want you to try to make the sound that goes with that number. You can use the stickers to help guide you. Take your time to think before you make the sound. (Randomly call out numbers from one to three for a total of 9 trials, 3 trails per stimulus level). (Provide verbal encouragement to keep the subject motivated).

Now I am going to turn on the  tape recorder and we will repeat the same task you just did for 51 trials. (Begin recording on the DAT recorder. The list of randomly generated numbers between one and three is read aloud and a response is produced by the subject. The DAT time recording is recorded on the data collection spreadsheet. Approximately 3 seconds is allowed between the end of the subjects last production and reading of the next stimulus
. After the 51 vocalization samples have been collected, the DAT recorder is turned off and a break is provided).


In the break between protocol 3 and 4, the subject will be provided with refreshments (water or juice) to maintain vocal hygiene. Extended breaks can be provided if the subject feels especially tired. It is estimated that screen and initial set up in session one will take approximately 20 minutes and data collection for all six protocols including a 15 minute break will take approximately 90-100 minutes. 

 In session two, the experimental procedure described above will be replicated. The order of administering protocols will be changed to control for order and practice effects. A brief audio-tape sample of the subject’s productions from session one will be replayed.  The subject will then have an opportunity to practice their productions and to set the visual markers for the different stimulus levels prior to beginning the experiment. Session two should last approximately 90-100 minutes. 

Design and Analysis

Each of the three experiments (i.e., frequency, intensity and duration) in this investigation is a series of eight case studies. For each subject, control of frequency, intensity and duration will be determined separately. The purpose is to describe the performance of individual subjects on the parameters investigated. For each subject, control of frequency, intensity and duration in session one is compared to session two to test for reliability of control over time. Including eight subjects in the investigation provides more evidence to support the claim that frequency, intensity and duration can be controlled by other individuals with severe dysarthria. General group trends of the data collected can be described if we find clusters of individuals with similar subtypes of cerebral palsy and similar involvement of the speech sound mechanism (R, Schuller, personal communication, March, 1997). Group data will not be used to carry out any specific data analysis. 

Sample size calculations in this series of case studies pertains to the number of data points collected for each protocol, from each individual subject (Pagano & Gauvreau, 1993; P. Austin, personal communication, July, 1997). A pilot experiment using the exact procedures proposed in this paper was conducted on an adult male with cerebral palsy and severe dysarthria. For the vowel /a/, 51 vocalizations
 were requested in each of the three protocols. The results of the study will be discussed in detail below. Using the sample data from the pilot study, power analysis and sample 

size calculations
 for this investigation will be completed to determine if 51 vocalizations per protocol is sufficient. 

Acoustic Analyses of Vocalizations
For each subject, DAT recordings of the 612 vocalization samples
 collected from session one and two will be analyzed using the CSL software. The acoustic waveforms of each vocalization will be saved as a separate computer file. Each isolated acoustic sample will then be analyzed. Glottal impulse markers will first be set to determine onset of voicing. The vocalization will be marked between the first glottal pulse and the last glottal pulse. This corresponds to the on-set and off-set of voicing, given that vowel productions are always voiced. The “marked region” will be analyzed using various analysis functions available on the CSL system (Figure 2). 

In the pitch protocol, the mean fundamental frequency of the vocalization (Hz) and the standard deviation
 will be determined using the “Pitch Extraction” function. For each vocalization, this summary data will be saved as a separate ASCII file. In the loudness protocol, the “Energy Calculation” function will be used to determine the average intensity of the vocalization (dB SPL) and the standard deviation. Again, a separate ASCII file will created for each vocalization. For the duration protocol, the duration of the marked region will be saved as a separate ASCII file for each vocalization. For each subject, all ASCII files will be imported into an Excel data sheet to minimize potential for transcription error.   

For each subject, a total of 612 computer files of digitized vocalizations will be saved. In addition, 204 ASCII files for each of the frequency, intensity and duration protocols will saved. For each subject, approximately 48-50 hours will be required for acoustic analyses
. 

Analysis of Data

Research question 1 (a, b and c) asks whether there are at least two distinct and non-overlapping levels within pitch, loudness and duration. Descriptive statistical analysis and information analysis are two methods which can be used to analyze the data collected in this investigation. They yield different results because they approach this question from different perspectives. The results of both analyses will be useful to the engineers who will eventually build a vocalization recognizer. Understanding the capacity of individuals with severe dysarthria to control their pitch, loudness and duration is important when attempting to use these parameters to characterize their vocalizations. It is equally important to determine whether subjects can consistently control various levels of pitch, loudness and duration. Control of more than one level of any of the parameters exponentially increases the number of vocalizations that can be used to control a VOCA that is interfaced with a  vocalization recognizer.

Descriptive analysis.     Separate analyses will be completed for vowel /a/ and vowel /i/. The results will be analyzed descriptively. In the pitch protocol, the analysis will be carried out on the 51 data values of mean fundamental frequency from session one, and 51 data values of mean fundamental frequency from session two. Similarly, in the intensity protocol, the average intensity level of the vocalization will be used for analysis. In the duration protocol, the total time of the vocalization will be used for analysis.

Descriptive analysis will be performed using the SAS (version 6.11) software package. This investigation requires the application of descriptive statistics rather than inferential statistics because the data obtained in each protocol come from one individual. The experimental design involves a stimulus-response paradigm. A discrete stimulus with three values, (1, 2, and 3) is presented to the subject to evoke a vocalization response. We assume that the vocalization produced by the subject will be influenced by the stimulus requested. The data samples for level 1, 2, and 3 are not independent since they come from the same individual. We can, however, visually inspect the 51 data points for patterns of responses to the three different stimulus levels. The mean response when asked to produce level one, two and three respectively, can be calculated using 17 data points each. In addition, the standard deviation of the responses can also be calculated. 

In the first research question (1a, b c), we have operationally defined that “distinct” levels should have minimal overlap between their distributions. We expect that 95% of the time a subject will be able to produce a vocalization within a specified range corresponding to the intended stimulus. Therefore, we can determine the lower and upper limits of the 95% confidence intervals around the mean for each stimulus level. These confidence limits form the boundaries of the “distinct” levels within each parameter. The 95% confidence limits for two adjacent “distinct levels” 

cannot overlap
. Based on a set of sample data, we can predict with some degree of certainty, that on average, a particular subject will be able to produce the stimulus level requested. 

The second research question is concerned with consistency of responses between session one and two. We can perform a paired t-test on the responses of level 1, 2, and 3 respectively between session one and two (alpha=.05). This statistic will determine whether there is a numerical difference between the means of the stimulus levels of the two sessions. A Pearson correlation coefficient will also be calculated to determine the relative difference between the responses for stimulus levels in the two sessions (r=.8). If there is no significant difference in the mean responses between sessions, we can infer that the subject will be able to produce the stimulus levels consistently. 

Informational analysis.     The principles of information theory can also be applied to the data collected. The applications and assumptions which can be made are more robust than in statistical analysis. Information theory can be applied to stimulus-response paradigms in which the overall variation within a population can be resolved into smaller categories with their own individual variations (Garner, 1953). The average information per stimulus for N trials is the difference between the variation of all responses subtracted from the average variation associated with each stimulus (Drestke, 1975; E. Sagi, personal communication, July, 1997). To determine the exact value for information, a very large amount of data, in the order of 10,000- 20,000 data points, would be required (Garner, 1953). We can estimate information by making a few assumptions. We can assume that the overall distribution of all vocalizations along a particular parameter, are normally distributed. We can also assume that the distributions of the stimulus levels requested are normally distributed. Therefore, we can average the standard deviation of the distributions of all of the stimulus levels requested if we assume that the standard deviations are approximately equal. The standard deviation of the total distribution, which in our case would include 51 points, can be determined (call it SDT ). We can also calculate the standard deviation of each of the three stimulus level distributions, using 17 data points each. The average of the three stimulus level standard deviations can be called SDAve. Using a mathematical approximation of information, the ratio of SDT to SDAve will provide an estimate of the number of distinguishable categories within that parameter (Garner, 1953; E. Sagi, personal communication, July, 1997). This value is an estimate of the channel capacity in the parameter under investigation. 

Informational analysis has advantages over the statistical approach discussed. First, it does not require independent samples. Second, it determines the number of distinguishable categories available in the parameter, without any a priori biases of how many stimulus distributions were requested
. Information analysis tells us the number of levels of pitch, loudness and duration that an individual is capable of producing. If asked to produce a vocalization within a given range, we know that the resulting vocalization will fall in one of X number of categories. The number of categories determined for each of session one and two can also be compared to assess consistency of responses over time.


 Results of pilot study applying descriptive statistics.    Preliminary statistical analyses have been performed on the results of the pilot study. The pitch, loudness and duration protocols were administered for the vowel /a/. Table 1 lists the summary statistics for each level of stimulus in the pitch protocol. 

Table 1

Summary Statistics for Pitch Protocol

 Level
Mean (Hz)
St. Dev.  (Hz)
Minimum
Maximum
95% Confidence Interval 






lower limit
upper limit

1
173.97
30.13
119.41
218.34
159.65
188.30



2
181.89
22.04
135.25
218.89
171.41
192.37



3
198.05
20.2
160.54
231.20
187.58
208.52



Note. All measurement units are in Hz.

Confidence limits for all three stimulus levels of pitch overlap. There is overlap between each adjacent stimulus level indicating fewer than 3 categories of pitch. There is also a small degree of overlap,  between the confidence limits of level 1 and level 3. The results indicate fewer than 2 categories of pitch control. A graphical illustration of the overlap between stimulus level distributions can be found in figure 3. There is a considerable amount of variability in the subject’s responses when asked to produce any of the three stimulus levels. Perhaps with training, he may be able to produce 2 distinct levels of pitch. 


Table 2 lists the summary statistics for the loudness protocol. The subject demonstrated a greater degree of control over this parameter compared to pitch.

Table 2

Summary Statistics for Loudness Protocol

 Level
Mean (dB)
St. Dev.  (dB)
Minimum
Maximum
95% Confidence Interval 






lower limit
upper limit

1
67.13
2.91
62.02
72.17
65.74
68.51



2
73.18
1.87
70.35
77.97
72.29
74.07



3
78.24
2.99
69.37
82.25
76.82
79.67



Note.  The measurement units here are decibels
. 

There is no overlap of the confidence limits between any of the three stimulus levels.

If we apply the operational definition of distinct levels and statistically analyze this data, the subject can be shown to have 3 distinct levels of pitch. Figure 4 provides a graphical illustration of the stimulus level distributions and the relative overlap.

Table 3 lists the summary statistics for the duration protocol. Similar to loudness, the subject does have some control over his vocalizations in this parameter.

Table 3

Summary Statistics for Duration Protocol

 Level
Mean (sec)
St. Dev.  (sec)
Minimum
Maximum
95% Confidence Interval 






lower limit
upper limit

1
0.55
0.13
0.37
0.79
0.49
0.61



2
1.56
0.67
0.67
2.64
1.24
1.88



3
2.92
1.08
0.62
3.88
2.40
3.44



Note: The measurement unit is seconds. 

The confidence limits of all three stimuli do not overlap. Thus, we can say that the subject was able to produce three levels of duration. Caution however, should be exercised in interpreting these results. The responses to stimulus level 2, ‘medium length /a/’, are not normally distributed. In addition, clinical observation during the experiment indicated that the subject began to experience fatigue toward the end of the session. The variability of his responses to stimulus level three, ‘long /a/’ was much greater than for ‘short /a/’. Figure 5 illustrates the stimulus level distributions. 


Results of pilot study applying information analysis.     Using the data from the pilot study, we an also apply information analysis to determine the number of categories in each parameter.

Table 4

Categories Estimated Using Information Analysis

Pitch 
Loudness 
Duration

SDT

26.06
5.27
1.22

SDAve

24.13
2.59
0.63

Estimate of Categories
1.08
2.03
1.94

Note: SDT is the standard deviation of the parameter distribution which includes all 51 data points. SDAve is the average standard deviation of all three stimulus levels requested. 

An estimate of the number of categories is derived by taking the ratio of the SDT to SDAve. The results of information analysis indicate essentially one category of pitch, two categories of loudness, and possibly two categories of duration. Again, because normal distributions of the stimulus level are assumed in this analysis, the estimate for duration must be interpreted with caution.

Discussion of findings.   There is a discrepancy in the estimates of categories per parameter using the statistical and information theory approaches. Both approaches assume normal underlying distributions. The statistical approach of determining confidence intervals uses the standard error of the mean
.  Informational analysis uses the standard deviations of the total population and that of the average of the stimulus ‘populations’. Both methods are equally valid because they provide different information about the subject’s response behavior. The statistical approach tells us about the mean responses when asked to produce a particular stimulus level. The information approach tells us about the variability of the responses when asked to produce specific stimulus levels. Figure 3 demonstrates that within the sample of 51 data points, there is considerable variability in the pitch parameter. There is however, less variability in the duration and loudness parameters. Perhaps pooling data from session one and two may provide further information about the response behavior in each parameter. 

Relevance and Future Directions

Research in the field of AAC with respect to speech recognition systems is still in its infancy. Existing AAC literature focuses on using speech recognition as a writing aid for individuals with motor and speech impairments. The possibility of using this technology to enhance face to face communication has not received enough attention. AAC users with severe dysarthria, however, report an unequivocal preference to use speech for communication. Speech is natural and encourages face to face communication. 

Application of speech recognition to AAC users has relied primarily on commercial software. Effective adaptations of commercial systems may be sufficient to meet the needs of individuals with mild speech impairments. In its current state, however, commercial technology is not sufficiently tolerant to recognize individuals with severe dysarthria. The objective of this investigation is to provide determine whether individuals with severe dysarthria can control specific acoustic parameters of their vocalizations. This information is necessary to support the development of software capable of analyzing disordered acoustic output. First, we must identify acoustic  parameters which can be manipulated consistently and reliably. Next, we must determine the amount of control in each parameter. A vocalization recognizer may be programmed to analyze these acoustic parameters. The implications are far reaching. The greater the number of distinct levels in each parameter, the greater the capacity of the individual to transmit information. Combining rate enhancement techniques, such as encoding, with vocalization recognition, has the potential to increase communication efficiency. Increasing the quality and quantity of communication exchanges of individuals with severe dysarthria is an important step toward reducing barriers to social, educational and vocational opportunities.

The following anecdote simply yet eloquently justifies this line of research. One day, during a break between data collection, our pilot subject (P), asked me to get his alphabet board from his bag. He then eagerly began spelling out a message on his board. He ‘said’, “I’m pretty good at being loud.” Then he laughed and ‘wrote’ “I’m not a singer though am I?” I said encouragingly, this is just the first time you’ve tried using your voice that way. He responded, “I didn’t know I could do all this with my voice”. 
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� Dysarthria is a neurogenic motor speech disorder. Slow, weak, imprecise and/or uncoordinated movements of the speech production musculature result in unclear speech output [Yorkston88].  


� A training period was allowed where the speaker practiced making “high”,  “medium” and “low” levels of frequency, intensity and duration. Visual cues were provided using the oscilloscopic display of the VisiPitch (Model 6087 DS, KayElemetrics Corporation, 12 Maple Ave, Pinebrook, NJ 07058).  


� Segmental features of a speech signal include transcription of the sample into the basic phoneme units [Shriberg95]. 


� Suprasegmental features of a speech signal include intonational markers, stress pattern, pitch variation, loudness variation, pausing and rhythm [Shriberg95]. 


� Alpha (letter) encoding, may include salient letter encoding or letter category encoding. In salient letter encoding, the initial letter of  each salient word in the intended message is used to construct the message code. The message ‘Hello, how are you? ” may be coded as “HHY”. Logical letter coding (LOLEC) attempts to make a logical link between the code and the intended message. Familiarity with traditional orthography and syntactic awareness are required to use this strategy. In letter category encoding, messages are categorized using an organizational theme. The message “ Hello, how are you?” may be coded “G.H.” for “(Greeting) Hello”. Alpha-numeric encoding typically uses letters to encode the message category, and numbers to specify the individual messages in the category. The message “Hello, how are you?” may be “G1” for “(Greeting)1” and “have a nice day” may be coded “G2”. In numeric encoding, numbers alone are  used to encode messages. In most cases the communication display is small and the codes are arbitrarily decided. Due to the extensive memory factors involved, the codes and numeric translations are usually listed in a chart or menu form as part of the selection display. Iconic encoding is another technique where sequences of icons are combined to represent words, phrases and sentences. Minspeak (semantic compaction system) uses icons which are rich in semantic associations. An “apple” might be associated with food, fruit, red, and round; and a “clock” may represent time, numbers, and schedules. Using these two icons, the message “Let’s go out for lunch” can be coded “apple, clock” while “clock apple” may represent “Is it time to eat?” The corresponding messages can be pre-stored using synthesized speech on a VOCA (Yorkston, Beukelman, & Bell, 1988).





� Electronic displays allow for dynamic chart-based strategies such as choice menus that adapt as the message is constructed. Message prediction strategies can also be used to increase the rate of message construction. Choice menus are altered based on the portion of the message that has already been formulated. Predictive algorithms are available for single letters, words or phrases (Yorkston, Beukelman, & Bell, 1988).


� Aphasia is characterized by a reduction in the capacity to decode (understand) and encode (formulate) meaningful linguistic units, such as morphemes, words and larger syntactic units (Darley, Aronson & Brown, 1975). Individuals have difficulties in listening, reading, speaking and writing. These deficiencies can result from reduced availability of vocabulary, as well as reduced efficiency for applying syntactic rules and diminished auditory retention span (Darley, Aronson & Brown, 1975).


� Hypoxia, periventricular hemorrhage, mechanical birth trauma and interuterine infection may be associated with cerebral palsy. Rapid periods of growth exacerbate some symptoms and may also result in regression of functional status. The four classes of cerebral palsy include spastic (75%), Athetoid (5%), dystonic athetoid or ataxic (10%) and mixed (10%) (Erenberg, 1984).





� Respiratory, laryngeal, velopharyngeal function and oral articulation may be variably altered in cerebral palsy. Poor respiratory control leads to inefficient valving of the air stream required for speech production. Reduced flexibility of the laryngeal muscles may result in a perception of monotonous pitch, weak intensity and hoarse vocal quality (Yorkston,  Beukelman & Bell, 1988). Difficulties with initiating voicing and interrupted phonation during speech may result from laryngeal and respiratory limitations. Velopharyngeal function may be inconsistent and uncoordinated resulting in nasal emissions and abnormalities of nasalance. Bryne (1959) reported that speech sounds which involve the tip of the tongue were most frequently misarticulated by children with cerebral palsy (e.g., /t/, /d/, /s/). Voiceless sounds (e.g., /t/, /s/) were misarticulated more frequently than voiced cognates (e.g., /d/, /z/).


� Static, speaker dependent systems are template matching systems. They require that the individual who trains the system be the same as that one who uses the system. They are “static” because recognition programs are not altered automatically as recognition errors occur. Numerous speech tokens are required to train the system to recognize a limited vocabulary (Noyes & Frankish, 1992). A token is a sample of speech while a model is the template for a particular word against which the incoming signal is compared (Goodenough-Trepagnier, Hochheiser, Rosen, & Chang, 1992). The speaker’s productions (tokens) are compared to the templates. During model-building, a token is accepted or rejected for inclusion in the model. During the recognition process, a token can be rejected or confused (i.e. recognition error). Consistency of speech is important because recognition is contingent on an acoustic match between the pre-stored template and the spontaneous utterance (Noyes & Frankish, 1992). Untrained words and phrases cannot be recognized with sufficient accuracy. 


� Adaptive speech recognition systems have large vocabularies, generally 20,000 words or greater, and contain pre-determined templates based on acoustic, phonetic and syntactic algorithms. Training sessions typically last 20 minutes. They consist of producing only a small set of words which are then used to modify the pre-determine templates. A separate user file is created for each user. Thus, the system can be speaker independent allowing for multiple user access. These systems are more tolerant of variations in productions since recognition is not solely based on making an acoustic match. Rather, recognition is a function of statistical probability using all the algorithms. Phoneme model recognition systems parse the word into its phonetic components and then make comparisons with pre-stored vocabulary templates. The vocabulary size and the acoustic contrasts between words in the vocabulary have implications on recognition accuracy levels (Ferrier, Jarrell & Carpenter, 1992). When the number of words with acoustic and phonetic similarities increases, the computation time and the possibility for recognition error increases (Quintin, Hallan & Abdelhamied, 1991; Noyes and Frankish, 1992).


� Bayes theorem is a ratio of conditional probabilities. If  “O”  is a sequence of observed acoustic units and “W” is a sequence of words, then P(O/W) is the probability that a specific acoustic output will be observed given a specified word sequence (L. Deng, personal communication, Jan. 17, 1997).





� The term model or modelling in terms of HMM and artificial neural networks, refers to a process whereby a system is attempting to simplify information such that it has a predictive method to analyze subsequent data.





� The case of phoneme modeling using HMM will be described for the purpose of simplicity. A word can be broken down into phonemic components, each of which has a stable acoustic state and transition states. HMM attempts to systematically uncover the stable “hidden” states present in the sample set of speech (D. Roy, personal communication, March, 1997) . The formulation of the HMM assumes that individual states are stochastic sequences and assume a Gausian distribution (Deng et al., 1994). Some investigators are using triphones to model the speech signal (Deng, Aksmanovic, Sun & Wu, 1994). A triphone is a cluster of three phonemes, the target phoneme and its preceding and following phoneme. For example, in the word ‘stop’ (/stap/) the first triphone is made up of: null phoneme, /s/ and /t/. The second triphone is /s/, /t/ and vowel /a/. The use of triphones to model speech allows for consideration of the transitions between phonemes and coarticulatory effects.





� If two acoustically similar words (“cat” and “cap”) were within the recognition vocabulary and then an error production “capt” was made, the ANN would decode the signal into its feature components to then choose which word production was intended.


� Three bits of information are required to reduce eight possibilities into 1 choice if binary decision, where the probability of one event occurring is 0.5 and the probability of the event not occurring is also 0.5. We can first divide the eight possibilities into 2 equal groups and toss a coin to choose a group of four. That constitutes the first bit of information. Then we can toss a coin to decide on a group of two; the second bit of information. Last, we can flip a coin to decide on the one choice selected from eight initial possibilities, the third bit of information.


� IntroVoice IE, The Voice Connection, Irvine, CA 92714.





� Minimal pairs are words that differ by one phoneme. For example, “mat” and “mad”. Minimal pairs are often used to improve articulation. 


� VADAS ECU is a non-commercial environmental control unit developed in Bath, UK at the Royal National Hospital for Rheumatic Diseases.


 


� The speech recognition system was a noncommercial system developed at U.C. Berkley, 1986). 





� The speech recognition system was a noncommercial system developed at U.C. Berkley, 1986). 


� DragonDictate is a product of Dragon Systems, Inc. , 90 Bridge Street, Newton, MA 02158. The version of DragonDictate used in this investigation is not specified.


� DragonDictate (Version 1.01A). Dragon Systems Inc., 320 Nevada Street, Newton, MA 02160. 





� IntroVoice II, The Voice Connection, Irvine, CA 92714.





� IBM VoiceType (version 1.00). IBM U.S.A. Department 2VO, 133 Westchester Ave., White Plains, NY 10604. 


� The ergodic model allows transitions among all steady states while the Bakis model is left-right serial constrained. Both are methods by which the system determines the probabilities associated with any given state in a spoken word (Deller et al., 1991). 





� Light Talker, manufactured by Prentke-Romich Co. Wooster, OH





� IntroVoice IE, The Voice Connection, Irvine, CA 92714








� Confidence limits of 95% correspond to the conventionally acceptable alpha level of .05. This criteria for distinct levels is more stringent than the 90% level of recognition quoted as acceptable for users with speech impairments (Deller et al., 1991; Kotler & Thomas-Stonell, 1997, Noyes & Frankish, 1992; Treviranus et al., 1991). Using the operational definition of distinct vocalizations levels, we expect that the intended vocalization will be recognized 95% of the time while a recognition error will occur 5% of the time. 


� In this example, each key on the VOCA is activated by producing a string of two vocalizations. We assume that duration and loudness can be controlled together (i.e., an individual can produce an /a/ sound which is long in duration and loud). In the present investigation, each parameter, frequency, intensity and duration are studied independently. Future studies may investigate the interaction of these parameters to determine whether they are orthogonal. 


� DragonDictate (version 2.51), Dragon Systems 320 Nevada Street, Newton, MA 02160.





� Based on the literature, it was assumed that speech recognition systems rely on consistency of speech production (cf. Fried-Oken, 1985). Therefore, it was assumed that individuals with severe dysarthria would be able to use commercial speech recognition systems if their speech was consistent, despite unintelligibility.


� Investigation of acoustic characteristics was undertaken due to large variability of phonetic characteristics in individuals with severe dysarthria (Brown & Docherty, 1993). 


� Each subject feigned speech impairment by placing large rubber balls in their mouth, speaking with a mouth guard or speaking with a bite block in place. The Assessment of Intelligibility of Dysarthric Speech was used to determine severity of impairment induced. Nine unbiased judges, three for each subject, listened to a tape of 50 single word productions and were asked to transcribe the words. All three subjects were judged to have speech intelligibility between 23-29%. Motor impairments were also simulated using an arm sling which restricted arm movement. An opaque plastic keyguard over the keyboard replicated mild visual acuity deficits. Physical fatigue and dysmetria were simulated by asking the subjects to spin the NordicTrak PowerBee Gyro Exerciser throughout the direct selection trials.


� When a speech signal is produced it represents characteristics of the source (the vocal folds) and the filter (the vocal tract). Cepstrum analysis is a powerful method for extracting the fundamental frequency from a speech signal. It is based on principles of Fourier analysis (Baken, 1987). 


� An example of the “fishing trip’ protocol for pitch can be found in Appendix B. The loudness and duration “fishing trips” are not included here because they are essentially the same as the pitch protocol. 





� An audio tape-recording of a trained singer was played to give the subject a model for the seven different pitch levels. 


� This experiment is a series of eight case studies. Group data are not compared given that control of the parameters will vary greatly between subjects despite the fact that they all have severe dysarthria. Replicating the study on multiple subjects allows for greater generalizability of the findings. It also provides further evidence to support the development of a vocalization recognition system for individuals with severe dysarthria. If clusters of specific subtypes of dysarthria are found in our sample of eight, it may be possible to describe general trends. 





� The two subjects who participated in the pilot study both used an alphabet board for face to face communication. The severity if their dysarthria impeded verbal communication. Both subjects preferred using email rather than the telephone. Using email, they could express themselves more clearly and be understood.  At times the telephone was used to confirm or change appointments. When the telephone is used, “yes/no” questions are asked to reduce the demand for verbal output and to clarify and confirm understanding.


� Assessment of dysarthria and determining a differential diagnosis between the various types of dysarthria is a process of obtaining descriptive data about the individuals speech production abilities (Yorkston, Beukelman & Bell, 1988). Darley, Aronson and Brown, (1975) have provided perceptual descriptions of the six types of dysarthrias from the Mayo Clinic studies.  The Mayo Clinic Motor Speech Examination is a clinical tool used by clinicians to collect perceptual information about the structure and function of the respiratory, laryngeal, velopharyngeal, and articulatory system.  


� The Assessment of Intelligibility of Dysarthric Speakers. Yorkston, Beukelman, & Traynor (1984) C.C. Publications, Inc., P.O. Box 23699, Tigard, Oregon 97223-0108





� Visi-Pitch Model 6087 DS, Kay Elemetrics Corporation, 12 Maple Ave, PineBrook, NJ  07058.


 


� Computerized Speech Lab (Model 4300), Kay Elemetrics Corporation, 12 Maple Ave, PineBrook, NJ  07058.





� Statistical Application Software (SAS) (Version 6.11), SAS Institute, Inc. Cary, NC TS040.  


� GSI 10 Audiometer, Electro-Medical Instruments, Co.,  349 Davis Road, Oakville, ON  L6J 2X2.


� The “speech frequency average” is the mean thresholds at 500, 1000 and 2000 Hz. It is believed that these frequencies carry the most information for understating speech. The speech frequency average is typically used to estimate severity of hearing loss. Normal conversational speech ranges between 40-60 dB. Hearing thresholds below 25 dB constitute normal to slight hearing loss. 


� A constant mouth-to-microphone distance is especially important for the loudness protocol. The measurement will be made with a ruler and monitored carefully through-out the session. Prior to commencing the experiment, a calibration tone will be recorded on the DAT recorder. The calibration tone will be used to convert the decibel units to dB sound pressure level when using the CSL (C. Dromey, personal communication, August, 1997).  





� If a subject produces a vocalization and then spontaneously corrects himself, the self correction will be accepted as the trial. Only one re-attempt will be allowed. Spontaneous self-corrections are assumed to be accidental errors due to lack of concentration or anticipation of the next trial rather than control.  


� A minimum of 50 vocalizations were required for information analysis calculations (E, Sagi, personal communication, July 1997). In the current protocol, 51 vocalizations are requested to have three equal sample sizes of 17 vocalizations per stimulus level. 


� Although sample size calculations are typically done to determine the number of subjects in a study, we can use similar procedures to determine the number of vocalization samples we should collect per protocol (P. Austin, personal communication, August 1997). Power analysis predicts the likelihood that a particular study will detect a deviation from the null hypothesis given that one exists. A type I error (alpha error) is made if we reject the null hypothesis when in fact it is true. A type II error (beta error) is made if we fail to reject the null hypothesis when it is false. By definition power is 1- the probability of a type II error. In any experiment, we would like to minimize the type II error in order to maximize power. There is however, a trade off between type I and type II errors. Reducing the overlap between the distributions under investigation is the only way to decrease both errors. Increasing the sample size is one way to achieve less overlap between two distributions. Sample size calculations help determine the number of data points required to provide a specified level of power (Pagano & Gauvreau, 1993). Both calculations require a sample of data from which a computer simulation program can extrapolate the power and sample size (P. Austin, personal communication, July 1997). 


� Six protocols of 51 vocalizations each in both sessions one and two will generate 612 vocalization samples for each subject. 


� Standard deviation of frequency and intensity will be recorded for descriptive purposes. We can discuss the variation of frequency and intensity inherent within each vocalization. 


� The estimated time for acoustic analysis is based on the time it required to analyze 153 vocalizations produced by the subject who participated in the most recent pilot study. The estimate of 48-50 hours for analysis of data from each subject does not include the time required to collect the data or to perform statistical/informational analyses.


� To illustrate the concept of non-overlapping confidence intervals let us take an example. Assume that two distinct levels of pitch were determined based on a sample of data. Call level 1, “low” and level 2, “high”.  Let us suppose that the confidence intervals for “low” ranged from 150 Hz to 310 Hz and the confidence limits for “high” ranged from 325 Hz to 425 Hz. Assume that a vocalization recognizer which attends to pitch is programmed to differentiate between vocalizations that are “low” and vocalizations which are “high”. A subject produces a 175 Hz vocalization and he intended to make a “low” sound. The vocalization recognizer makes an accurate recognition. Then the subject produces a 315 Hz sound again intending to make a “low” sound. A recognition error occurs because the system classifies the sound as “high” when in fact the subject intended to produce the “low” vocalization. If the confidence intervals did overlap, we would have a problem when a vocalization falls in a range that is included in both “low” and “high” distributions.


� A priori bias refers to the number of stimulus categories that are imposed by the experimental procedure. For instance, if the standard deviation of total parameter distribution was 100 units, and the average standard deviation of the three stimulus levels requested was only 20, the number of categories estimated would be 5. The fact that the number of information categories (5) is greater than the number of requested categories (3) demonstrates their independence. 


� A calibration tone was not used in this experiment. Decibel units reported here are dB HL rather than dB SPL.


� Standard error of the mean is standard deviation divided by the root of sample size (Pagano & Gauvreau, 1993).
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