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Life Patterns 
Brian Clarkson and Alex Pentland 

Abstract— In this thesis I develop and evaluate computational methods for extracting life’s patterns from wearable sensor data. Life 
patterns are the reoccurring events in daily behavior, such as those induced by the regular cycle of night and day, weekdays and 
weekends, work and play, eating and sleeping. My hypothesis is that since a “raw, low-level” wearable sensor stream is intimately 
connected to the individual’s life, it provides the means to directly match similar events, statistically model habitual behavior and 
highlight hidden structures in a corpus of recorded memories.  I approach the problem of computationally modeling daily human 
experience as a task of statistical data mining similar to the earlier efforts of speech researchers searching for the building block that 
were believed to make up speech. First we find the atomic immutable events that mark the succession of our daily activities. These 
are like the “phonemes” of our lives, but don’t necessarily take on their finite and discrete nature. Since our activities and behaviors 
operate at multiple time-scales from seconds to weeks, we look at how these events combine into sequences, and then sequences 
of sequences, and so on. These are the words, sentences and grammars of an individual’s daily experience. I have collected 100 
days of wearable sensor data from an individual’s life. I show through quantitative experiments that clustering, classification, and 
prediction is feasible on a data set of this nature. I give methods and results for determining the similarity between memories 
recorded at different moments in time, which allow me to associate almost every moment of an individual’s life to another similar 
moment. I present models that accurately and automatically classify the sensor data into location and activity. Finally, I show how to 
use the redundancies in an individual’s life to predict his actions from his past behavior. 

Index Terms—Keywords should be taken from the taxonomy (http://www.computer.org/mc/keywords/keywords.htm). Keywords should 
closely reflect the topic and should optimally characterize the paper. Use about four key words or phrases in alphabetical order, 
separated by commas.  

——————————      —————————— 

1 INTRODUCTION
Imagine a device that can preserve our memories as we 
experience them and in the way we experience them. In 
order to be useful, the device must come with an 
environment to facilitate the remembering or browsing of 
stored experiences. A person’s day-to-day activities are 
cyclical at some time-scales and follow slowly changing 
trends at other scales. The device’s owner might have 
habits that structure a large part of his activities. This 
behavior should be readily portrayed and taken advantage 
of by the device, raising the basic question of how to 
provide a summarization to the casual browser. While this 
question has historically proven to be quite difficult in the 
fields of video and text summarization, we will argue that 
the very extended, intimate, and highly structured nature 
of the data that a prosthetic memory device is uniquely 
exposed to, makes it feasible to build statistical models of 
what events are commonplace and what events are rare. 
 

The technology is available now to approximately 
capture and store the visual and auditory experiences of a 
person over a period of years and soon a lifetime. Since 
computational devices are gradually finding their way into 
more and more aspects of our daily lives, having these 
devices recognize and understand the events in our life is 
becoming important. A quick brainstorm will yield 
numerous uses for data of this type, from video diaries [13] 

to truly context-aware personal agents [45, 29]. However, 
just recording this data is not enough. It’s not even enough 
for the simple task of re-experiencing or browsing one’s 
stored experiences because of the sheer amount and variety 
of data involved. For these kinds of applications we at least 
need to be able to automatically search through the 
experiential data. For example, while browsing the user of 
an automatic diary comes across a kind of scene that he 
wishes to see more of. In this case it is necessary to be able 
to associate similar scenes to each other. Descriptive and 
predictive capabilities are necessary for agent-based 
applications that take actions based on the user’s behavior. 
Knowing the habits of users and the difference between 
typical and atypical behavior are basic requirements for 
agents that work smoothly with humans. However, again, 
prediction is impossible unless we have a notion of the 
similarity between the scenes we are attempting to predict. 

 
Quantitative analysis of someone’s life can take place at 
many different time-scales. At each time-scale we expect to 
be able see some classes of phenomenon and not others (see 
Figure 0-1). Strapping sensors on an individual and 
sampling at the 1Hz time-scale will enable us to detect 
when someone is falling down the stairs. However, we will 
need to lift our view of the data to at least a daily time-scale 
if we want to predict when someone is going to fall down 
the stairs. In computational perception to date there has 
only been work on narrow, short time-scale domains. Long-
term studies on individuals have been limited to the works 
of chronobiologists (researchers of long-term human 
physiology), psychologists, and clinical scientists. We now 
have the computational tools (storage space and 
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computational power) to start considering modeling an 
individual’s life at longer and longer time scales.  
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Figure 0-1: The different time-scales of life. 

This work tackles the question of how to recognize and 
predict a person’s day-to-day behavior from visual sensor 
data. Perhaps the hints that cognitive scientists are 
extracting about how we organize our own wet memories 
could provide clues on how to organize our machine’s 
memories. Using ideas from episodic memory organization 
and insect-level perception, we develop an automatic 
framework for organizing sensor data that is intimately 
connected with an individual’s daily activity. While this 
framework is designed and built with the application of a 
memory prosthesis (e.g. automatic diary) in mind, there is a 
direct application to context-aware agents and the frame 
problem in cognition.  
 
Our first approach is to establish a similarity metric or 
method for assessing the similarity of pairs of time intervals 
in experiential sensor data. This similarity metric can then 
be used to group and align similar events together, 
structure the experiential sensor data into scene hierarchies, 
and classify situations. Our second approach is to 
statistically estimate the temporal models or statistical rules 
that describe the typical evolution of events in the 
experiential sensor data. These temporal models are a 
succinct description of the person’s typical life pattern and 
can theoretically be used to identify anomalies or 
deviations from the norm that might signify novel events in 
the person’s life. Since temporal models capture the 
habitual dynamics of the individual’s life, they are also 
useful for prediction and summary. 

2 BACKGROUND & MOTIVATION 
Vannevar Bush has had his hand in many lines of academic 
thought, and ours is no exception. Even in 1945, he was 
imagining a wearable camera for the purposes of making 
the serendipitous record. Specifically he identifies three 
important properties that such a record needs to be useful: 

• Continuous Recording 
• Complete Storage 
• Accessibility 

Amazingly enough, Vannevar Bush was (correctly) 

unimpressed by the technical problems of taking the 
pictures, but instead points out that: “The only fantastic thing 
about it is the idea of making as many pictures as would result 
from its use.” Of course he is referring to the development of 
the film, which he is assuming is still necessary, and the 
selection of which pictures will be lucky enough to receive 
attention for development. His observation underlines the 
necessity of indexing services for the growing store of 
images. Almost 50 years before Vannevar Bush wrote his 
prophetic article, inventors and tinkerers were already 
making wearable cameras in the form of scarves, walking 
sticks and pocket watches. In recent history, Steve Mann 
[31] has experimented with wearable cameras as a means of 
artistic expression (e.g. lookpaintings), online mediated 
reality, and as a means of personal record-taking with the 
same philosophy as Vannevar Bush’s description above. 
However, there is a lack of experiments on what to do with 
the ever-increasing store of images obtained via a wearable 
camera. 
 
Many have been inspired by Bush’s description of the 
memex, and it is in fact considered by many to be the 
conceptual pre-cursor to the World Wide Web (attributed 
to another characteristic of the memex which is the set of 
links between objects that the memex contains).  Many have 
interpreted Bush’s memex concept as organizing the 
knowledge of humanity in general, but what if we interpret 
as organizing the memories of a single individual. In this 
case the memex becomes a kind of hyper-linked diary, 
much like the web logs, or blogs, that are turning into a 
recent WWW epidemic. However, no one has found a way 
to automatically include the real experiences, the visceral 
experiences, of the diary writer into the diary. Even more 
difficult is the creation of associating links amongst an 
individual’s experiences. Let’s take a look at how and why 
researchers have started tackling this and other related 
problems. 

 
2.1 Multimedia Indexing 
There is a large body of research on text classification and 
retrieval for organizing information that might be found in 
the textual components of a memex. However, this work 
tackles the analogous problem for perceptual sensor data 
recorded from an individual’s life. How do we establish 
similarity between different sensor measurements or times 
of an individual’s life? Undoubtedly, this similarity metric 
is task-specific. Thus, by virtue of the data being sight and 
sound, a closely related field is multimedia indexing where 
scientists and engineers are building systems that attempt 
to organize video and sound.  
 
There has been a great deal of work in the last few decades 
concerning the problem of indexing databases of images 
and sound. The core problem in this field is to produce an 
appropriate similarity metric for comparing a given query 
example to objects in the database. Pentland et.al. [38] 
shows through an image sorting application, called 
PhotoBook, that in certain cases you can derive features 
from sets of related images (eigenfeatures) whose ordering 
in the Euclidean sense corresponds roughly to the way a 
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human would order a given set of images by similarity. 
Iyengar et. al. [22] extends this to video. Zhong et. al. [57] 
and later Lin et. al. [30] noticed that there is innate structure 
in a video’s low-level characteristics that often corresponds 
to higher-level semantic structures of scenes. Zhong et. al. 
finds this innate structure in the low-level characteristics by 
clustering and heuristically grouping segments and shows 
that this relationship does exist in some cases. 
Independently, Saint-Arnaud [43], Foote et. al. [17] and [15] 
found that similar to image texture, you can define a 
concept of auditory texture and use it to classify and group 
audio clips based on similarity. 
 
However, there is a key difference between the datasets of 
multimedia objects that the above researchers are 
considering and the database of daily experiences 
considered here. Day-to-day experiences are mostly routine 
or quasi-periodic. Theoretically the frequency of novel 
events is much lower than in TV newscasts or movies. 
Video surveillance researchers have noticed this about their 
data to great benefit. When you point a camera at a parking 
lot for long periods of time, with a little bit of domain 
knowledge you can easily cluster the usual from the 
unusual. [19] It seems our domain lies somewhere between 
movies and security video on the entropy scale.  
 
How often novel events occur in someone’s life is certainly 
different for each person, but ultimately the proportion of 
routine events to novel events is expected to be quite high. 
This translates into two important properties, redundancy 
and closure. Contrast this with a database of movies or 
images on the web. There is almost no limitation on the 
types of objects that could be present and hence a 
researcher using these databases can almost never assume 
that the queries will come from the same set of objects that 
are in the database. Nor will the apparent commonality of a 
pattern in the database necessarily have any relationship to 
the commonality of the pattern to the user. 

2.2 Context-Aware Agents 
How can person’s day-to-day behavior be recognized or 
predicted by a computational agent? If we are going to 
build a personal agent (wearable or not) that anticipates its 
master’s behavior we need to be able to build at least this 
basic level of understanding into the system. [29] Agents 
without these abilities can only act on explicit input thus 
limiting their usefulness to virtual environments such as 
the Internet. For software agents in wearable computers, 
PDA’s, and cell-phones arguably most of the relevant 
context is contained in the physical world of the user and 
the user’s environment. Hence, to say an agent in this 
situation is context-aware or situated means that it must 
have sensors into the user’s physical world and an ability to 
learn the basic rules of the user’s physical world.  
 
Agents that recognize events in its master’s surroundings 
and behavior can proactively react without explicit 
direction from the master, thus expanding their usefulness 
into new domains. Agents that don’t anticipate can react 
and reconfigure based on the present and the past, but 

generally don’t extrapolate into the future. This is a severe 
limitation because agents without predictive power cannot 
engage in preventive measures, “meet you half way”, nor 
engage in behavior modification. This is not to say that a 
clever engineer couldn’t herself notice a particular situation 
that is clearly indicative of some future state, and thus, 
manually program an agent to anticipate that future state 
when the situation occurs. However, definitely for a 
wearable agent and possibly others, typical situations span 
the entire complex domain of real life where it is 
unreasonable to manually design such anticipatory 
behavior into an agent.  
 
In the last 10 years there has been an explosion of efforts to 
bring context to computational agents. At Xerox, Lamming 
et. al. [28], used context in the form of location, encounters 
with others, workstation activity and telephone calls, as a 
way of keying information for recall. While some of the 
inputs to this system indirectly reflect the physical state of 
the user and his surroundings, they are limited to those 
physical activities that have a measurable effect on a system 
that is not designed to measure perceptual events (e.g. 
location corresponds to the user switching wireless hubs as 
he moves from room to room, typing at a workstation 
corresponds to a user activity, etc.). Complete multi-person 
systems (C-MAP [51] and The Conference Assistant [12]) 
using user location and history as the major context 
components, have also been built and tested for assisting 
participants at conferences, exhibitions, and other 
interaction- and information-rich events. The C-MAP 
system was unique in that one of its design goals was to 
also provide a useful record of the event and the user’s 
actions during the event. Along similar lines is Brad 
Rhodes’ Remembrance Agent [41] who uses limited 
context, text typed into a wearable prompt, to trigger just-
in-time information. However, Rhodes was always the first 
to admit that in order to claim that an agent is truly context-
aware that agent needs sensors into the real physical world. 
 

The realization of the importance of sensing to context-
awareness for computing applications has sparked intense 
interest in wearable sensors.  Healey et. al. [21] constructed 
and experimented with a novel wearable sensor-driven 
agent called the StartleCam. It was a wearable camera 
integrated with a galvanic skin response (GSR) sensor 
who’s measurements are generally considered to 
correspond to stress levels, especially when induced by a 
startle response.  A wearable computer was programmed to 
monitor the GSR levels, detect a startle response, and 
respond by taking a picture via the worn camera. An 
alternate way of constructing this device that is more 
aligned with the ideas of this work, is to constantly record 
video and the GSR levels simultaneously. Later, the startle 
events detected in the GSR record can be used to highlight 
potentially interesting points in the video. Work by Starner 
et. al. [50], uses wearable cameras to extract information 
about the user’s location (omni-directional camera) and 
task (camera oriented on the user’s hands) as a user plays a 
mobile, multi-person game. Farringdon et. al. [14] uses 
sensors designed to monitor the user’s motions (walking, 



4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  MANUSCRIPT ID 

 

running) and posture (sitting, standing, lying) to determine 
user activity. 

2.3 Memory Prosthesis 
No one has yet been able to so completely record the 
experiences of one individual as to be able to go back to any 
moment, any second, of that person’s life and invoke a 
remembrance of that moment. With such a recording, there 
are theoretically opportunities for understanding the 
structure of an individual’s life for psychological, 
chronobiological, or personal agendas.  

What are the long- and short-term trends? 
What are the repeating or semi-repeating patterns? 
What part of your day is routine?  
What part of your day is novel? 
Are your current habits, for example, number of 
people you talk to per day, different from last 
year? 
During what periods are you the most active? Do 
they come in cycles? 

In addition to these directed questions we can consider the 
use of this data in an environment that assists the user in 
effectively browsing his/her memories. A very compelling 
application is to use the structure extracted automatically 
by statistical analysis as scaffolding for contextualizing and 
compartmentalizing memorabilia that the user wishes to 
organize and inter-relate. This way the user is provided 
with an environment for browsing and exploring paths of 
memories along criterions other than time. 
 
Lamming and Flynn [28], using the ParcTab [46] system, 
pioneered a portable episodic memory aid called the 
Forget-Me-Not system. They also noticed that the intimacy 
that a wearable or portable device has with its user enables 
it to consistently record certain aspects of its user’s life. 
Since studies by [4] have confirmed that we group our 
memories into episodes, Lamming et. al. consider their 
device as an aid for recalling a particular memory episode, 
hence the name. However they do not attempt to organize 
the device’s captured data into a similar episodic structure 
even though this could greatly assist the user in browsing 
the growing store of data.  

2.4 The Frame Problem 
As A.I. researchers built robots to perform increasingly 
complicated tasks at some point they found that even if 
they provide complete descriptions of the world and the 
rules that govern the robot’s world there always remained 
the fundamental problem of choosing which pieces of this 
knowledge to consider when constructing a solution to a 
given problem. Unless the robot has some concept of 
relevancy, the exponential explosion of contingency plans 
and never-ending chains of induction will inevitably 
swamp it. Daniel Dennett [11] gives an excellent account of 
this illusive problem. Various researchers have since 
proposed mechanisms for alleviating this problem, but 
none are universally accepted as solutions yet, mainly due 
to the lack of convincing demonstrations on real world 
situations (consult [11] for listing on some of these 
approaches). 

 
For example, in 1974, Minsky [33] published a memo titled 
“A Framework for Representing Knowledge”. He outlined 
a structure, called a frame, that contained within it pointers 
to various pieces of knowledge that were expected to be 
useful in a given situation; not all pieces of information that 
could possibly be useful, only those expected to be useful. 
Thus, a frame also has a collection of constraints that need 
to be loosely satisfied in order for the frame to become 
“active” only in the correct situation. A frame specifies the 
expectations, predictions, or instructions about what should 
come result given that the frame’s conditions are met.  
 
Researchers in psychology [3] have also championed this 
idea of a frame (also referred to as schema) because of its 
apparent and compelling similarity to the episodic 
organization of human memory. While many competing 
theories are disagreeing on the details, the basic idea is that 
the processes associated with remembering perceptual 
events are intimately intertwined with the processes of 
concept formation and problem-solving. These frames are 
just collections of pointers to useful information (memories 
or even other frames) and can be seen as 
compartmentalizing or clustering an individual’s concepts 
and memories, essentially for the dual-purpose of efficiency 
and generalization. 
 
Researchers in computer vision and audition are familiar 
with the context problem since they routinely have to 
restrict their domains (i.e. manually specify a valid frame or 
set of valid frames) in order for their systems to work. For 
example, speech recognition has only been successful when 
the environment (car, office, wheelchair) and grammar 
(switchboard task, command-and-control, spontaneous 
conversation) are constrained. Face recognition benefits 
when we can constrain the face database and tracking 
benefits when the lighting conditions are known. All of 
these systems suffer from the frame problem because they 
need to know their current context in order to apply their 
context-sensitive algorithms. 

2.5 Insect Perception 
Rather than try to use perception techniques that are 
usually associated with high-level human-like intelligence 
such as speech recognition or face recognition, this work 
relies on insect-level perception. We can define what this 
means with an example from how insects, specifically 
Cataglyphis desert ants, are believed to navigate to 
previously visited locations. Studying how insects 
remember locations indicates what level-of-detail is 
necessary for recordings of environments during a 
matching task. It has been shown that a number of species 
of insects, from bees to ants, utilize landmark features in 
the surrounding scenery to navigate. [25] If landmarks are 
altered or moved, then the foraging insect will navigate as 
if their target location is in the new position implied by the 
altered landmarks. Lambrinos et. al. [27] has constructed 
robots that are based on a model of desert ant navigation. 
Desert ants seem to use landmark features recorded from 
various positions around the site to be able to find the site 
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again. This is very similar to the localization by panoramic 
views that researchers in robotic vision are developing [23].  

3 DATA COLLECTION & METHODS 
Our lives are not random. They certainly exhibit structure 
at all time-scales. How is this structure organized? What are 
its atomic elements? What is the network of dependencies 
connecting the past, present, and future moments? Limiting 
our analyses to an appropriate level-of-detail, enables us to 
reasonably tackle these questions. Since these questions 
need hard data to produce answers, we address how to 
collect measurements of an individual’s experiences. 
 
First-person, long-term sensor data is a guiding principle 
for our overall approach. It is inappropriate given the 
current state of the art to tackle the problem of how to give 
a machine human’s level understanding of an individual’s 
daily behavior without first granting it with an insect’s 
level of understanding. Perhaps in certain cases, we can 
obtain near-human understanding by severely restricting 
the domain. However, in this work the completeness of the 
domain, that is an individual’s day-to-day life, is a priority 
and hence we are guided to the more appropriate level of 
perception portrayed by insects. Similar to the 
representation-free approach of Rod Brooks, we avoid 
building complete models of the user’s environment and 
instead rely on the redundancies in the raw sensor data to 
provide the structure. This philosophy implies the use of 
coarse level features and emphasizes robustness over detail 
(such as in the use of context-free methods over context-
specific methods). 
 
In this work we took a straightforward approach to 
addressing the issues of a similarity metric and temporal 
models of life patterns. We collected long-term sensor 
measurements of an individual’s activity that enables the 
extraction of atomic elements of human behavior, and, the 
construction of classifiers and temporal models of an 
individual’s day-to-day behavior.  

3.1 The I Sensed Series: 100 days of experiences∗ 
The first phase in statistically modeling life patterns is to 
accumulate measurements of events and situations 
experienced by one person over an extended period of 
time. The main requirement of learning predictive models 
from data is to have enough repeated trials of the 
experiment from which to estimate robust statistics. 
Experiential data recorded from an individual over a 
number of years would be ideal. However, other forces 
such as the computational and storage requirements 
needed for huge data sets force us to settle for something 
smaller. We chose 100 days (14.3 weeks) because, while it is 
a novel period for a data set of this sort, its size is still 
computationally tractable (approx. 500 gigabytes).  
 
We designed and followed a consistent protocol during the 
data collection phase. Data collection commences each day 
 

 

from approx. 10am and continues until approx. 10pm. This 
varies based on the sleeping habits of the experimental 
subject. The times that the data collection system is not 
active or worn by the subject is logged and recorded. Such 
times are typically when: batteries fail, sleeping, showering, 
and working out. 
 
In addition to the visual, aural, and orientation sensor data 
collected by the wearable, the subject is also required to 
keep a rough journal of his high-level activities to within 
the closest half hour. Examples of high-level activity are: 
“Working in the office”, “Eating lunch”, “Going to meet 
Michael”, etc. while being specific about who, where, and 
why. Every 2 days the wearable is “emptied” of its data, by 
uploading to a secure server. 
 

3.2 The Data Collection Wearable 
The sensors chosen for this data set are meant to mimic 
insect senses. They include visual (2 camera, front and 
back), auditory (1 microphone), and gyros (for 3 degrees of 
orientation: yaw, pitch and roll). These match up with the 
eyes, ears, and inner ear (vestibular), while taste and smell 
are not covered because the technology is not available yet. 
The left-right eye unit placement on insects differs from 
that front-back placement of the cameras in our system. 
However, they are qualitatively similar in terms of overall 
resolution and field-of-view. The properties of the 3 sensor 
modalities are as:  
 
Audio: 16kHz, 16bits/sample (normal speech is generally 
only understandable for persons in direct conversation with 
the subject.) 
Front Facing Video: 320x240 pixels, 10Hz frame rate (faces 
are generally only recognizable under bright lighting 
conditions and from less than 10ft away.) 
Back Facing Video: 320x240 pixels, 10Hz frame rate (faces are 
generally only recognizable under bright lighting 
conditions and from less than 10ft away.) 
Orientation: Yaw, roll, and pitch are sampled at 60Hz. A 
zeroing switch is installed beneath the left strap that is 
meant to trigger whenever the subject puts on the wearable. 
Drift is only reasonable for periods of less than a few hours. 
 
The wearable is based on a backpack design for comfort 
and wardrobe flexibility. The visual component of the 
wearable consists of 2 Logitech Quickcam USB cameras 
(front- and rear-facing) modified to be optically compatible 
with 200° field-of-view lenses (adapted from door viewers). 
This means that we are recording light from every direction 
in a full sphere around the user (but not with even 
sampling of course). The front-facing camera is sewn to the 
front strap of the wearable and the rear-facing camera is 
contained inside the main shell-like compartment. The 
microphone is attached directly below the front-facing 
camera on the strap. The orientation sensor is housed inside 
the main compartment. Also in the main compartment are 
computer (PIII 400Mhz Cell Computer) with a 10GB hard 
drive (enough storage for 2 days) and batteries (operating 
time: ~10 hrs.). The polystyrene shell (see Error! Reference 
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source not found.) was designed and vacuum-formed to fit 
the components as snuggly as possible while being 
aesthetically pleasing, presenting no sharp corners for 
snagging, and allowing the person reasonable comfort 
while sitting down. 
 
Since this wearable is only meant for data collection, its 
input and display requirements are minimal. For basic 
on/off, pause, record functionality there are click buttons 
attached to the right-hand strap (easily accessible by the 
left-hand by reaching across the chest). These buttons are 
chorded for protection against accidental triggering. All 
triggering of the buttons (intentional or otherwise) is 
recorded along with the sensor data. Other than the 
administrative functions, the buttons also provide a way for 
the subject to mark salient points in the sensor data. The 
only display provided by the wearable is 2 LEDs, one for 
power and the other for recording. 

4 THE SIMILARITY MEASURE 
Before we can answer any of the questions about 
classification, prediction or clustering, we first need to 
determine an appropriate distance metric with which to 
compare moments in the past. We will look at how to 
determine what are the appropriate intervals to be 
comparing and how to quantify their similarity. While 
doing so we present new methods for data-driven scene 
segmentation. We will then present methods for 
determining the similarity of pairs of moments that span 
time-scales from seconds to weeks. The tools we build up in 
this chapter provide the foundations for classification and 
prediction.  

The Features 
The first step in aligning sensor data is to decide on an 
appropriate distance metric on the sensor output. Possibly 
the simplest similarity measure on images is the L1 norm on 
the vectorized image. Computer vision researchers 
typically avoid using such a simple metric because of its 
vulnerability to differences in camera position and 
orientation and opt instead for orientation-invariant 
representations, such as color histograms or image 
moments. However, as mentioned before there is clear 
evidence [54] that insects (and in many cases humans) store 
view-dependent representations of their surroundings for 
later recall and matching. In this case the dependency of the 
image and the camera position and orientation is an 
advantageous one. Throwing away the information that 
links an image to the state of the camera at the moment of 
capture doesn’t make sense when the task is to situate the 
camera wearer. 
 
Our distance metric between images in defined directly in 
terms of the pixels of the image: 

3

( , ) ( ) ( )
W H

ij ij
i j c

D x y x c y c= −∑∑∑  

 

( ) pixel's c-th channel value at (i,j) of image xijx c =  

Thus, it is directly influenced by the size, shape, color, and 
position of objects in view. Contrast this to color histogram-
based metrics that are invariant to position and shape, but 
are sensitive to size and color. The L1-norm on images is 
very good at discriminating different images, but probably 
one of the worst metrics for achieving any kind of 
generalization or robustness to noise. Our decision to use 
this metric for alignment rests on two observations.  
 
First, given the size and coverage of our 100-day data set, 
finding a match for a particular image is literally like 
finding a “needle in a haystack”. On the other hand, the 
larger our data set is, the closer the match will be. Thus the 
robust metrics, which aren’t very discriminative, serve well 
when we are interested in finding matches that aren’t very 
close (a requirement for sparse data sets). This comes at the 
cost of never being able to find that really close match. Of 
course, an optimized image matching technique would use 
the (supposedly less computationally intensive) histogram 
metric to achieve a coarse matching, and then finish off 
with the more discriminative metrics to find the best match. 
There is a great deal of comprehensive research on image 
features for the task of image matching, which doesn’t need 
to be repeated. The conclusion so far seems to be that there 
is no one good set of features for all tasks. So we choose a 
generic metric that behaves well with respect to false 
alarms and instead rely on context for robustness to noise 
and generalization. 
 

Without target of attention

With target of attention

Walking over a bridge Shopping at BestBuy

Renting a video Working at the desk  

Figure 0-1: Two beneficial side-effect of the fish-eye lens. 
Objects receiving the wearer's visual attention cover more 
pixels. The wide-angle capture enables a complete but low 
resolution sampling of the periphery. 

Second, the warping of our images by the fish-eye lens has 
some beneficial side-effects for the pixel-based metric. Since 
more resolution is given to the center of the image, objects 
that are being attended to tend to overwhelm the rest of the 
clutter (see Figure 0-1). This is qualitatively similar to how 
the human eye samples the light image falling on the retina. 
However, these foreground objects have to either be very 
close or very large for this to happen. Compare this to the 
case when there is no foreground object (again see Figure 
0-1). Now some part of the background is being magnified, 
but since it is not receiving the wearer’s attention, the 
center pixels will not persist as much as the pixels in the 
periphery. Schiele’s [44] work on segmenting out 
attentional objects is based on this property. Also, since the 



CLARKSON ET AL.:  LIFE PATTERNS 7 

 

fish-eye lens captures the full periphery with low 
resolution, cluttering objects in the background (like this 
fellow pedestrian overtaking the wearer in Figure 0-2) will 
not affect many of the total peripheral pixels. 
 

Walking over a bridge Walking over a bridge  

Figure 0-2: Generally, objects that are not attended to will 
only cover a small number of pixels. This is useful for 
achieving robust estimation of peripheral conditions. 

The computational complexity of calculating the pixel-
based metric is (3 ) 3(320)(240) 153,600O HW = = . 
This is unreasonable when we are processing days of video. 
Also not every pixel in the image has the same importance. 
For example there is the rim of the fish-eye lens visible in 
all images. These pixels don’t really change from one image 
to the next. However, a principle components analysis 
(PCA) will take care of both these problems (please see [38] 
and [52] for a similar usage of PCA). As part of PCA we 
compute the eigenvalues and eigenvectors (or eigenimages) 
of the image covariance matrix. Since our computers 
couldn’t hold a 153,600-by-153,600 element covariance 
matrix, we bilinearly subsampled the original 320-by-240 
images to 32-by-24 pixels, resulting in a 2304-by-2304 
covariance matrix. The eigenimages are the optimal (in the 
least-squares sense) modes or basis vectors for 
reconstructing the images that were used in estimating the 
covariance matrix.  
 
The choice of how many eigenvectors to use was 
determined by a trade-off between reconstruction error and 
computational complexity incurred in the rest of the 
processing pipeline. We chose to project the front and rear 
views on to the subspace spanned by their top 100 
eigenvectors. The reconstruction in these subspaces is 85% 
(front) and 87% (rear). This results in a 200-dimensional 
feature vector being passed to the next stage of alignment. 
Figure 0-3 summarizes the feature extraction step for the 
alignment. 
 

Crossing the street

-

320 x 240 32 x 24

Mean

X

Top 100 Eigenvectors

Crossing the street

X-

320 x 240 32 x 24

Mean

Top 100 Eigenvectors

Front View

Rear View

project

project

1
...1

0
0

1
...1

0
0

1
...2

0
0

 

Figure 0-3: The processing pipeline for the alignment 
feature.  The front and rear views are both subsampled 
and projected on to their respective top 100 eigenvectors. 
The result is concatenated into a 200-dimensional feature 
vector. 

The Alignment Algorithm 
The goal of this section is to be able to take any pair of 
sequences from the I Sensed data set and match each time 
step in the “source” sequence with a time step in the 
“destination” sequence. In other words, as we move 
linearly through the “source” sequence each moment is 
associated with a similar moment in the “destination” 
sequence. We can then use the cost of the match to 
represent the dissimilarity of the “source” and 
“destination” sequences. At the same time we are labeling 
the “source” sequence with the contents of the 
“destination” sequence. This answers both questions of 
how similar/dissimilar are two subsequences and why are 
they similar/dissimilar at the same time. In this section our 
main piece of technical machinery is the Hidden Markov 
Model (HMM) to represent constraints of a match and the 
Viterbi algorithm to perform the actual matching. 
 

Time Constraints 
We would like to bias the matching towards smooth 
transitions in the “destination” sequence from one time 
step to the next.  This follows from the fact that if two 
points of time in someone’s life are close than they should 
be semantically similar with respect to location, activity, 
etc. regardless of the sensor reading. For example, say an 
individual wearing a camera on his chest is walking down 
a brightly lit hallway. As he walks, he suddenly lifts his 
arm to rub his eyes, thus completely occluding the camera. 
The main activity (walking down a hallway) hasn’t 
changed, nor has the location. However, without the 
smooth time constraint the times when the individual is 
rubbing his eyes would be matched with other dark 
moments. So it makes sense to try to limit the transitions in 
the “destination” sequence to be local in time. However 
there are two questions that need to be considered about 
this constraint. At the time-scales greater than a causal 
sequence, we can expect a longer sequence to be (almost) 
any permutation of causal subsequences. Hence large 
transitions in time should be allowed and in any direction 
in time.  
 

The Alignment Hidden Markov Model 
We now encode the constraints discussed above in the form 
of an HMM. Essentially, we represent the “destination” 
sequence as an HMM with state transition probabilities that 
encode the global and local transition constraints. We will 
call this HMM the alignment HMM. The features of the 
“source” sequence are the output observations for each 
state. Let 1...t T=  represent the index into the “source” 
sequence. Let tx  represent the feature of the “source” 
sequence at time t .  Let 1...s N=  represent the index into 
the “destination” sequence, or equivalently, the s -th state 
of the alignment HMM. Let sy  represent the feature of the 
“destination” sequence at time s . The goal of alignment 
can be stated as determining the state sequence, *{ }ts , that 
gives the best possible match to the input features, { }tx , 
from the “source” sequence. This framework is equivalent 
to dynamic time-warping (DTW), except the cost functions 
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are represented probabilistically and thus more easily 
interpretable.  
 
We encode the local and global time constraints discussed 
above into the transition probabilities of the alignment 
HMM: 

1
1

1
, 0( | )

, otherwise

t ts s
t t

t t
Z s s Kp s s
Z

α
β

−−
−

−

 ≤ − ≤= 


 

The first case assigns the probabilities for transitions of at 
most K  steps in the “destination” sequence. Its form is 
exponential to insure that the cost of a single transition that 
skips n  time steps is the same as the cost of n  transitions 
of one time step each. These transitions, which we will call 
the α -transitions, are the local transitions that try to 
maintain sequential continuity through momentary 
matching difficulties from minor insertions or deletions 
(e.g. those caused by rate differences, temporary occlusions, 
etc.). The second case assigns a constant probability, β , to 
global time transitions of any distance and in any direction. 
Generally, we would set β α<< . These transitions, which 
we will call the β -transitions, allow an alignment path to 
“teleport” instantly from any point in time to any other 
point in time all with the same associated cost. As 
mentioned before, this is useful when aligning sequences 
that consist of permuted subsequences, or have long 
insertions and/or deletions. Since Z  is just a normalization 
constant, K , α  and β  are the only free parameters. 
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Figure 0-4: The parameterized form of the alignment 
HMM's transition probabilities. 

 
The state emission probabilities are a function of similarity 
of the features in the “source” and “destination” sequences. 
We can define a Gaussian-like emission distribution for 
each state in the alignment HMM as follows: 

( , )( | ) t stD x y
t tp x s Ze=  

( )D i  is the distance function on the features (L1-norm in 
our case). Again, Z  is a normalization constant. If ( )D i  
were the Mahalanobis distance than this distribution would 
be exactly Gaussian. However, we use the faster L1-norm 
appropriate to our pixel-based features. Also since our 

features are already decorrelated as a result of the 
projection on an eigenbasis there is no need to include 
scaling by the inverse covariance matrix. 
 
Given values for the free parameters, K , α  and β , we 
can compute the optimal alignment of the “source” and 
“destination” sequences by the Viterbi algorithm. The 
similarity of the sequences is appropriately measured by 
the likelihood score calculated during the course of the 
Viterbi algorithm. Recall that the computational complexity 
of Viterbi is 2( )O TN  in time and 2( )O TN N+  in space 
(we can reduce this by computing the distance and 
transitions probabilities on the fly but at a severe reduction 
in speed). Thus as the destination sequence gets longer the 
computational and storage loads increase quite rapidly. 
Typically, beam search is used to reduce the computational 
cost of Viterbi, however, this is not an option for us because 
the beam would prune all the alignments containing long 
jumps. This would prevent us from aligning sequences 
which contain similar causal subsequences but in 
differently permuted orders. If we keep all the parameters 
in memory for the fasted compute times, then the longest 
sequences we can align to are about 5000 steps long*. At a 
frame rate of 10Hz, this is about 8 minutes. So it is clear that 
if we are going to align sequences on the order of days or 
months, we have to use a multi-resolution approach. 

A Taxonomy of Alignments 
The source and destination sequences don’t have to contain 
the same sequence of features to yield alignments that are 
useful. In fact the most interesting cases from the point of 
view of this work are those pairs of sequences that are 
between the two extremes of being well aligned at every 
step in time and not being alignable anywhere. Differences 
might arise due to the speed at which the subject is going 
through the activities represented in the sequences. There 
are cases when the sequences share similar parts but the 
parts are out of order. In these cases, the alignment score 
(i.e. likelihood of the Viterbi path) will be slightly lower 
(compared to monotonically match-able sequences) since 
β -transitions will be necessary to align the two sequences. 
We will discuss these cases more later on because they 
provide the means for scene segmentation. 
 
Figure 0-5 shows two typical examples of alignment paths 
obtained when aligning sequences of quasi-similar content. 
The pair of sequences on the left are two examples of the 
subject walking from location A to location B. The 
sequences are highly similar thus only α -transitions are 
necessary to align them. This is what we will call an α -
match. However, in the source sequence the trip took 
longer than it did in the destination sequence. The pair of 
sequences on the right both contain the subject’s act of 
visiting three locations, A, B, and C. However, the order of 
these visits are different in each sequence. This is 
recognizable by presence of segments of continuous α -
transitions punctuated occasionally by β -transitions.  This 
is what we will call a β -match. The β -transitions occur 
when the user is transition from one scene (in this case  

* This is assuming a 1GHz Pentium IV with about 500MB of RAM. 
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locations) to the next. Providing a taxonomy of alignments 
enables users of a search engine based on this work to use 
some interesting queries. For example, the user might point 
to an example of himself returning home after work by 
foot, and then ask for α -matches that occur at a faster 
speed, thus identifying those times when he returned home 
on rollerblades. 
 

Alignment of Two Sequences of "Walking to Lab"
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Figure 0-5: Alignment paths for (a) an α -matchable pair 
of sequences, and (b) a β -matchable pair of sequences. 

 

Data-driven Scene Segmentation 
A key capability required for browsing, classification, and 
prediction, is the segmentation of the data into manageable 
coherent chunks, or scenes. Segmentation into scenes is 
useful for browsing because it helps depict to the user what 
the main parts of a temporal sequence are and makes it 
easy to show how they relate to each other (e.g. scene 
transition graph). Scene segmentation is useful for 
classification because it guides the choice of labels and 
determines the intervals over which to integrate 
information from low-level features. Prediction becomes an 
insurmountable task with temporal sequences that have 
long and complicated dependencies between points in time, 
especially if those dependencies reach far back into the 
past. We will show that our method for scene segmentation 
is well-suited for compressing the past into a set of 
manageable chunks. In later chapters, we will show how 
this makes it possible for us to build prediction models that 
can use larger amounts of the past than previously possible. 
 
Most of the difficulty researchers have faced while tackling 
this problem is the lack of a suitable definition of what a 
“scene” actually is. Many researchers base their algorithms 
for scene change detection on shot boundary detection [30]. 
Shot boundaries (the switching of camera views or edit 
points) are artificial artifacts introduced by the video’s 
editor and algorithms for detecting them will usually fail 
on contiguous unedited video captured by a single camera.  
Certainly, this is one way to avoid having to define what a 
scene is, since the editor has already define them. On the 
other hand, some researchers define the scene as being a 
interval of time during which a pre-selected set of features 
are statistically constant, such as motion [47] or color [48]. 
Scenes changes are detected by building detectors on top of 
a time-derivative representation of these features. The main 
problems with this class of approach are that they only use 

local information (time-derivatives of the time-localized 
features) and it is very difficult to adapt to gradual changes 
in the feature statistics (non-stationarity). Another class of 
methods, model-based segmentation (train a model, use it 
to label the data), requires that you are able to define 
exactly what you mean by a scene, via feature-selection, 
rules or by labeling training data. For example, we might 
decide to equate location to scene, label a portion of data as 
such, train location models, and then use them to segment 
the rest of the data. These methods of course only work 
when your training set adequately covers the space of 
possible test inputs, a situation to which change detection 
methods are more robust. 
 
We propose an alignment-based segmentation. Suppose we 
wish to find the scenes in a given sequence. Suppose also 
that our knowledge consists only of a set of previously seen 
sequences. First we proceed by aligning our given sequence 
with our entire bag of examples, so that every moment in 
the given sequence is matched to a moment in a past 
example. Let’s assume there is a point where our current 
sequence is aligning nicely with a particular past sequence 
(indicated by α -transitions). So we keep traveling down 
our current sequence, watching the alignment path as we 
go. Eventually, during the alignment the past sequence that 
we have been aligning to will diverge and we will have to 
make a β -transition to another remote place in our bag of 
past examples. Since the alignment is the best possible, this 
means there are no other past examples that better align to 
our sequence for a longer period of time (there might be 
shorter ones). We have reached a point in our sequence 
beyond which all of our past examples don’t extend. This is 
a natural place to deduce a scene break.  
 
The basic principle being used is minimum description 
length (MDL), since we always choose longer scenes if 
there is evidence that a similar lengthy scene has occurred 
before. Since our alignment algorithm tries to minimize the 
number of β -transitions it can be thought of as computing 
the MDL labeling of the given sequence using the past 
examples as possible labels.  
 
In essence, to support a scene in this framework, the system 
merely needs to find at least one match somewhere else in 
the data. The longer the match, the longer the scene, 
regardless of what happens inside. This way scenes are 
minimalistically defined by what sequences are repeated in 
the data and are independent of the nature of the scene.  
 
We know give the full details of the segmentation 
algorithm.  
 
1. Alignment: Let ( )1 ,..., Tx x x=  be the source sequence 

in which we wish to find scene breaks. Let 

( ) ( ){ }1

1 1 1
1 1,..., ,..., ,...,

L

L L L
N Ny y y y y yϒ = = =  be the 

set of L  destination sequences. To simultaneously align x  
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with all of the sequences in ϒ  we use an alignment HMM 

with a state-space that spans all of the destination 

sequences and thus has 
L

i
i

N N= ∑  states. We also need 

to slightly generalize the transition probabilities to this case 

so that the α -transitions are only between intra-sequence 

states, 

1
1 1

1
, 0  and , same sequence( | )

, otherwise

t ts s
t t t t

seg t t
Z s s K s sp s s
Z

α
β

−−
− −

−

 ≤ − ≤ ∈= 


. 

Thus, the N N×  transition matrix will have a block 

diagonal structure. Distances need to be computed between 

all pairs of elements in x  and ϒ  for a T N×  distance 

matrix. Computing the Viterbi path of this HMM on the 

source sequence will yield an alignment path, 

( )* * *
1 ,..., Ts s s=  * 1...ts N∈ , that best matches moments 

in x  with any of the moments in sequences in ϒ . 

 
2. Scene Change Score: A scene break occurs when there is a 
β -transition. However, not all β -transitions are equal. So 
we score each moment in the alignment path as 

* *
1 1 1

1 1

0  and , same sequence

/ 0  and , different sequences
0 otherwise

t t t t t t

t t t t t

s s s s K s s

c N L s s K s s
− − −

− −

 − ≤ − ≤ ∈
= ≤ − ≤ ∈



. 

This allows longer jumps to have larger scores but assigns a 
constant score, /N L  (the average sequence length), to 
jumps between sequences in ϒ . Jumps less than size K  
(i.e. α -transitions) receive a minimal score of zero. 
 
3. Hierarchy of Scenes: Finally if we sort the values of { }tc  in 
descending order and successively split the sequence x  at 
the associated times, a hierarchy of scenes is generated 
ordered by level-of-detail. Another way to describe the 
construction, is as sweeping a threshold from top to bottom 
down a graph of tc , successively splitting the x  sequence 
as the threshold encounters peaks. 
 
Figure 0-6 shows an example of scene segmentation when 
ϒ  contains only one sequence that is locally similar to x  
but globally different. This way when aligned they yield a 
permuted path (see section 0). In order to achieve the best 
segmentation results it is desirable for the destination 
sequence to be a permuted version of the source sequence. 
Otherwise if there is no local similarity then this technique 
simplifies to pair-wise image clustering with temporal-
smoothing. Thus it is important to include as much material 
in the set of destination sequences, ϒ , as possible so as to 
increase the probability of find a good local match to each 
moment in the source sequence. However, computational 

requirements of the alignment will increase rapidly with 
the size of ϒ . In the next section we show methods for 
alignment at coarser resolutions that will allow us to 
include more in ϒ . 
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Figure 0-6: The algorithmic pipeline for segmenting a 
source sequence according to the contents of a destination 
sequence. Starting from top and proceeding to the bottom, 
(1) Alignment of the source sequence to the destination 
sequence, (2) Scoring each time step for the possibility of a 
scene change from the alignment path, (3) a Hierarchy of 
Scenes can be generated by sweeping a threshold across 
the scene change score. 

Multi-scale Alignment 
Alignment at the finest level of detail would consist of 
aligning each frame of a pair of sequences at the original 
recorded rate. However, since the computational cost for 
aligning a pair of sequences grows prohibitively with the 
length of the destination sequence, we need to adapt a 
multi-resolution method in order to align sequences on the 
order of days. In this section we show alignment at three 
different time-scales, fine (frame-rate), medium (run-length 
encoded signal), and coarse (5 minute chunks) alignment.  

Fine-scale Alignment 
With a fine-scale alignment on portions of the I Sensed 
data, it is possible to do very detailed comparison of two 
activity sequences. For example, it is possible to take two 
examples of the subject walking to the store and, after 
aligning at frame-rate, compare the matched images for 



CLARKSON ET AL.:  LIFE PATTERNS 11 

 

differences, missing objects, lighting changes, and so on. 
Figure 0-7 gives an example of the subject walking entering 
a building on campus and walking down a hallway. Notice 
that the alignment between the two sequences is exact 
down to what doorway and bulletin board he is passing by. 
In some frames you can see the presence of other people in 
the hallway (e.g. frame 14) that are not presence on May 10 
but are on May 4.  
 
May 10, 2001

May 4, 2001
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35

21:46:40

20
:2
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21:47:20

21:49:04
21:51:04
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46

20
:2

8:
39

21:50:07

 

Figure 0-7: Fine-scale alignment of two similar scenes that 
happened on separate days: entering a building and 
walking down a hallway. 

As mentioned before, it is too computationally intensive to 
do this kind of fine-scale alignment between every pair of 
moments in the I Sensed data. Sequences should be 
segmented into manageable chunks and evaluated for 
overall pair-wise similarity before they are chosen as 
candidates for fine-scale alignment.  
 

Run-length Encoding 
A useful tool for time-compressing the feature sequences is 
run-length encoding. As you might intuitively expect, 
video of an individual’s life is full of long sequences where 
not very much is happening, punctuated by bursts of 
activity. This makes it an ideal candidate for run-length 
encoding (RLE). The procedure for RLE on video is as 
follows: 
 
1. Choose a change threshold, τ  and initialize *, 0t t = . 

If 
*

max

( , )t t
D x x
D

τ> then add the current image, tx , to the 

compressed sequence and set *t t= . ( maxD = the largest 

distance possible between a pair of images) 

2. Set 1t t= +  and repeat step 2. 
 
The resulting time-compressed sequence is irregularly 
subsampled where the sampling rate is proportional to the 
rate of change in the video. An entire day can be RLE’ed at 
a 15% change threshold from the original ~150,000 images 
to a manageable 3,000-5,000 images. The fact that such 
small threshold will nevertheless yield large compression 
rates is very fortunate. As we can see in Error! Reference 
source not found. the original video, even at such a short 
time-scale (one minute) and active period (shopping), 
contains long sequences of very little change as the user 
waits at the deli or browses through the beverages. At 5% 
the some of the long sequences are still exist due to small 
amounts of motion that is usually present when a camera is 
mounted on a person. However, at 15% no more repetitions 
exist but all of the major views are included.  

Medium-scale Alignment 
The RLE compression step at a 15% change threshold 
allows us to align a pair of days in about 5 minutes of a 
single PC’s time. The average frame rate of RLE-15% 
compressed video in the I Sensed data set is 0.1 Hz or 1 
frame every 10 seconds, but the instantaneous frame rate is 
highly variable, from 10 Hz to 0.001Hz. 
 
In order to evaluate the use of the alignment score as a 
measure of similarity between days, we chose to compare 
the rate at which locations in the source and destination 
sequences were correctly matched by the alignment. We 
manually labeled the situation class of every 5 minute 
interval of May 9th and the 10 randomly chosen days. The 
situation labels and the categories that we chose to group 
them into are given in the next chapter on situation 
classification. The resulting labeling can be seen in Error! 
Reference source not found.. Visual inspection of the 
situation labeling without alignment doesn’t clearly show 
why a pair of days would be similar or not. However, if we 
align the pair of days and then compare the situations that 
were matched then we can begin to see how the days are 
dissimilar or similar. In Error! Reference source not found. 
we show this aligned comparison of situation. Notice that 
the similar day succeeds in matching a number of outside 
and inside situations. Contrast this to the dissimilar day 
where the only matches were the ubiquitous “at work” 
situation and the “office” (sometimes). 

Coarse-scale Alignment 
When the goal of the alignment is provide either links of 
association to common moments in the past or derive good 
scene segmentations, then it is necessary to include as many 
days in the alignment HMM as possible. To this end we 
introduce our coarsest scale of alignment which allows us 
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to align a given day against 30 other days. The key 
component of the coarse alignment algorithm is to use the 
alignment scores of a medium-scale alignment on 5 minute 
chunks as the input into the coarse-scale alignment. The 
outline of the coarse-scale is as follows: 
 

1. For every pair of 25 RLE-15% frames in 
{ 1 , 30 }x day days= ϒ =  we align and store the 
alignment score in a TxN� �  similarity matrix. We 
call these 25 frame sequences the coarse chunks. 
They vary in absolute time duration from 10 secs to 
10 minutes, but average 5 minutes. 

2. Then we align x  against ϒ  using the inverse 
similarity matrix as the distance function ( )D i  
and the same transition function, 1( | )seg t tp s s − , 
that was defined in section 0 (Data-driven Scene 
Segmentation). 

 
We chose a set of 32 days* to completely align with each 
other (i.e. 1 day vs. 31 days for each day). The computation 
of the alignment scores for all days in step 1 of the coarse-
scale alignment was the most expensive, taking about 1 
night to compute on a 1GHz computer. However, the result 
is a 3500-by-3500 similarity matrix that can aligned in under 
10 minutes.  
 
The coarse-level alignment can be used for a number of 
tasks: 

• Deriving an associative network between moments 
in a large number of days 

• Segmenting scenes for browsing 
• Clustering similar days based on matching of 

similar moments rather than a global aggregrate 
score. 

• Building prediction models that model 
dependencies over days 

• Classifying situations 
In the upcoming sections we evaluate a few of these. 

5 SITUATION CLASSIFICATION 
“Where are you and what are you doing?” are two of the 
most basic facts about your state. Many of your basic 
decisions, activities, and the events that happen to you are 
dependent on your location and the state of your location 
(e.g. turning down a hallway, meeting someone, turning on 
the light, eating at a restaurant). We believe that it is not 
location alone or activity alone that determines your 
context or influences your next action, but rather the 
interaction between location and activity. It doesn’t make 
sense to model location irrespective of activity and vice 
versa. The two concepts are so highly correlated (certain 
locations are for certain activities, certain activities are for 
certain locations) that from a statistical point of view they 
must be modeled together. This coupling of location and 
activity is represented together in the concept of a situation.  
 
 

* Actually 34 sequences since two of the days were split into two runs 
since we needed to briefly shut the data collection wearable off for 
maintenance. 

 Presumably at this moment you are sitting somewhere, 
perhaps your office or the library, reading this document. 
Let’s assume that reading is one of the many activities that 
you conduct in your office. Arguably, reading only makes 
up a small portion of what could be called your office 
situation. Your office situation might also include speaking 
with colleagues, talking on the phone or typing at your 
computer. The office situation seems to be delineated by the 
physical boundaries of your office walls. However, it 
doesn’t make sense to define all situations by the location 
they happen in. For example, the situation of “eating out” 
could and usually does happen across many locations (the 
local neighborhood café, the posh Italian restaurant in 
downtown, etc.).  
 
In the upcoming sections we show how we can use the 
alignment similarity measure (given in 0) to classify 
situations in the I Sensed data set. We give results∗ for 
situation classification when using only short-term context 
(one RLE chunk vs. one RLE chunk alignment) and when 
using long-term context (one day vs. 30 day alignment). 
Naturally there are situations when one type of context is 
more appropriate than the other. In the last two sections of 
this chapter we give a method for combining the two types 
of context that improves classification accuracy over using 
either type of context alone. 

The Situations 
We labeled 20 days of the days used in the 30 day 
alignment (of section 0) for location every 5 minutes for a 
total of ~2000 labeled sections. If more than one location 
occurred in a given 5 minutes then that 5 minutes received 
multiple labels. To build our situations we grouped 58 
locations by common activities. Table 0-1 gives the 
resulting 19 situations after the grouping. Naturally some 
of the locations contain other locations (e.g. the subject is 
always at the Media Lab if he is in his office). 

Context-free Classification 
In 0 we calculated the similarity between every pair of 
medium-level chunks (25 frames of RLE at 15%) in 30 days 
by aligning the frames and noting the log likelihood of the 
alignment. Our hypothesis is if different chunks are of the 
same situation (say both are from the street situation) then 
their alignments should give high scores relative to other 
chunks from different situations. Our earlier experiments 
had hinted at this possibility. So for any given chunk 
another chunk that has a high alignment score relative to it 
should be of the same situation class.  
 
To test this hypothesis we took every chunk in the labeled 
20 days and order the other chunks by their alignment 
score. The chunk was correctly classified if the chunk with 
the highest alignment score was from the same situation 
class and incorrectly classified if not. This is also the rank-1 
 

∗ We will be giving the total accuracies in two flavors. Since the situations 
occur with vary different frequencies we need both. The accuracy (in the 
plots) is simply the number of correctly classified situations over the total 
number of situations seen in the test set. In the text we will also quote the 
average accuracy, which is the mean accuracy for all 19 situations. This 
accuracy is immune to the effects of varying situation frequency. 
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accuracy. The rank-2 accuracy is when we consider a chunk 
correctly classified if at least one correct match is in the top 
2 scoring chunks. This is a completely unsupervised 
classifier since no knowledge of the labels was used to 
generate the similarity measure. Since the score is only 
dependent on the alignment of a pair of medium-level 
chunks (approx 1-5 minutes in duration), the classification 
is only affected by short-term memory (or context). 
 
Figure 0-1 gives the results for matching situations of 
chunks with only short-term memory over 20 days of data 
(or about 2000 chunks). The chance recognition rate is the 
probability of a correct match if we just choose another 
chunk at random. Recognition rates vary quite a bit 
between class but all are many times larger than the chance 
recognition rate, indicating that the alignment score is a 
decent measure for similarity of situation. In fact the overall 
score for all situations is 89.4% (rank-1) and 95.0% (rank-2) 
over time. The average accuracy over the 19 situations is 
82.4% (rank-1). 
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Figure 0-1: Rank-1 and rank-2 situation matching 
accuracy for the medium-level chunks via their alignment 
score. The figure gives the per situation accuracy and the 
total accuracy along with the chance recognition rates. 

Far vs. Near Matches 
We examined the errors that the short-term classifier makes 
in the experiment above. When the ranking of examples by 
the alignment score is unable to find a similar situation in 
the same day as the test chunk and is forced to choose one 
in another day. There is nothing wrong with choosing a 
match in a different day, but it turns out that the short-term 
classifier is not good at matching chunks that are far apart 
in time. Since only 57.9% of the closest matches in the 
experiment above are matches to other chunks within the 
same day of the test chunk, this weakness is expected to 
affect overall performance quite a bit. To quantify this 
intuition, we decided to compare matching accuracies for 
when we force the match to be in the same day (near) and 
in another day (far). Figure 0-2 gives the resulting 
recognition scores. Notice that the near accuracy (95.1%) is 
quite high compared to the far accuracy (72.2%). The 
average far accuracy over the 19 situations is 56.4% and the 

average near accuracy is 87.4%. This validates our intuition 
that near matches are easier for the context-free classifier 
than the far matches.  
 
If we examine these far errors more closely we see that 
many of the mismatched chunks have high scores and are 
visually similar but don’t make sense given the flow of 
events around the test chunk. This is a hint that context can 
help us correctly classify these “far” matches. 

Classification with Long-term Context 
Fortunately, we have an ideal tool for bringing long-term 
context to the classification problem – alignment. Recall in 0 
we were able to align each day against 30 other days at the 
coarse level of detail (chunks). We can view this alignment 
in a different light. By aligning we matched chunks in a 
given day to chunks in the other 30 days. However, the 
each chunk-to-chunk match must contribute to a good 
alignment of the entire day to the other 30 days and not just 
be a good short-term match. Hence the coarse level 
alignment will smooth out matches that are good in 
isolation but don’t follow the usual progression of events 
seen in the other days that we are trying to align with.  
 
The long-term classifier is then constructed by matching 
every test chunk with the chunk that was aligned to it 
during the coarse daylong alignment. Figure 0-3 gives the 
results of the classification with context. The overall rank-1 
accuracy* is 94.4% and the rank-2 accuracy is 96.6%. The 
average rank-1 accuracy is only 73.4% due to a few low 
performing classes (stairs, restaurant, bridge). This is an 
improvement over the context-free classifier by about 7 
percentage points. However, recall that the context-free 
classifier is able to choose from the (easier) near matches 
while this classifier (by design) can only align chunks to 
chunks in different days. Hence the matches are all far 
matches. This means we should be comparing our accuracy 
to the context-free classifier’s far performance of 72.2%. 
This is 24 percentage points below the contextualized 
classifier’s performance showing that context indeed helps 
a great deal when we are forced to make matches between 
separate days. 

 
Situations Locations (grouped by activity) 

home home 
neighborhood Beacon St., Massachusetts Ave. (Boston-side) 
bridge Harvard Bridge, Longfellow Bridge 
street Kendall Square, Boston Downtown, Main St., 

Memorial Dr., Cambridgeside, 77 Massachusetts 
Ave. 

hallway Infinite Corridor 
campus inside & outside of bldg. 56,. 66, 7, 10  
at work Media Lab (entire building) 
elevator elevator (anywhere) 

 
* Since the coarse alignment was done over a larger set than what was 

labeled, some labeled chunks are matched to unlabeled examples. We 
threw these out of the tabulation, resulting in the vehicle situation having 
no pairs of matches to count. 
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stairs stairs (anywhere) 
office office (at Media Lab) 
lab Dismod, Garden, Interactive Cinema, copiers, 

CASR, Advisor’s office 
meeting Facilitator Room, Black Couch Area, Bartos 

Auditorium 
kitchen kitchen (anywhere) 
bathroom bathroom (anywhere) 
gym DuPont Athletic Center 
vehicle taxi, bus, subway 
store Tower Records, Realtor, Graduate Housing Office, 

Medical Center, Color-Kinetics Inc.,The Food 
Trucks, Student Center, ATM 

restaurant Ginza, Cheesecake Factory, Kendall Foodcourt,  
Toscanini’s, Bertuccis, AllAsia, Whitehead 

Cafeteria,Walker Cafeteria, Bio-Cafe, Penang 
class Japanese 

Table 0-1: The situations and the actual location labels 
that they represent. 
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Figure 0-2: The performance of the short-term classifier 
when we force the match to be in the same day (near) and 
in another day (far). 
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Figure 0-3: The performance of the contextualized 
classifier at matching situations. Rank-1 is the accuracy 
when only considering the actual chunk aligned to the test 
chunk. Rank-2 is when a correct match exists within one 
time step in either direction along the alignment path. The 
vehicle situation had no labeled pairs of matches to count. 

Hybrid Classifier 
Finally, we would like to combine our ability to find good 
matches within the same day with our ability to find 
matches between separate days. To do this we can use the 
following simple rule: 
 

If a given test chunk’s context-free match is in a 
separate day then classify this chunk with the 
contextualized classifier, otherwise it is a near match 
and thus we should use the context-free match. 

 
A situation classifier based on this rule will take advantage 
of the strengths of context-free and contextualized 
classification. Refer to Figure 0-4 for the per situation 
classification accuracies of this hybrid classifier. The overall 
accuracy is now 97.0% over 20 days of situations. The 
average accuracy is 85.5%. 
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Figure 0-4: Performance of the hybrid classifier at 
situation classification. This classifier uses context-free 
classification on the near matches and contextualized 
classification on the far matches. 

6 LIFE’S PERPLEXITY 
“When you come to a fork in the road, take it.” –Yogi Berra 
 
At each moment in our lives, not every possible action is 
available for us to take. One cannot teleport in both time 
and space from breakfast at home to dinner at a restaurant 
in the blink of an eye. We can expect some moments to 
present numerous paths that smoothly diverge into 
radically future situations from the present situation while 
other moments may provide few alternatives. Since there is 
a natural tendency for us to limit the amount of variability 



CLARKSON ET AL.:  LIFE PATTERNS 15 

 

in our life, we might choose to habitually ignore certain 
alternative paths during the course of our day-to-day 
activities. There are an infinite number of possible routes to 
take from home to work, but out of habit and practicality 
we usually settle on a very small number like two or three. 
The concept we are referring to, which is concerned about 
the number of paths of action emerging from a given scene, 
is called the perplexity of a scene*.  
 
In the previous chapter we developed a similarity measure 
that allows us to compare moments and intervals of video 
from an individual’s life. By doing so we constructed an 
abstract space, one for each time-scale of the application of 
the similarity measure, in which the streams of sensor data 
are winding paths. Let’s call this space a situation space 
since we showed in 0 that two similar intervals of video 
(and hence near to each other) are very likely to be of 
similar situations. Since no two moments in someone’s life 
are exactly the same, the winding path never intersects 
itself unless we start to discretize or cluster the situation 
space. Once this is done, we can measure the perplexity (i.e. 
the number of forks in the road) at each point in the sensor 
stream. Places in the sensor stream that display a high fan-
out can be thought of as decision points. In this chapter, we 
propose a method for finding these decision points and 
then go on to measure their perplexity and the consistency 
of the choices taken at those points (prediction accuracy). 
Our approach is to first segment the sensor stream based on 
where we believe the decision points are. This process is 
based on the scene segmentation algorithm given in section 
0. Then we assign discrete symbols to the sequences 
between the decision points by clustering with the 
similarity measure. After collapsing all runs of a symbol to 
a single symbol we can estimate the predictive accuracy of 
a 1st order Markov model and measure the perplexity of 
each symbol (see Error! Reference source not found.). We 
conclude the chapter by interpreting these results. 

Clustering the situation space 
Previously in section 0 we described a scene segmentation 
algorithm that essentially determined scene boundaries by 
where β -transitions occurred. Since these are the places 
where a given sequence diverges from the best-aligned 
past/future example, we can imagine that the individual 
has made a decision that is not typical (i.e. different from 
the past or future). In the following experiments we use the 
segmentation (842 scenes over 30 days) provided by the 
alignment of 1 day against 29 other days (section 0). Thus in 
this case, a β -transition signifies a point in one day where 
the experiences of the individual diverge from what was 
observed in all the other 29 days.  
 
To assign symbols with each of these, we constructed a 
merge tree by successively merging the most similar pair of 
scenes in an agglomerative bottom-up manner. Similarity 
between clusters was calculated as the similarity of the least 
similar pair of examples in the clusters (e.g. this is the  
* We use the word scene to generically refer to any interval 
of experiences in a person’s life.  

 

‘complete link’ metric which favors compact clusters, as 
opposed to the ‘single link’ metric which favors long 
chains). The result is a binary cluster tree, which we show, 
fully depicted down to 200 clusters in Error! Reference 
source not found.. To obtain an N-clustering of the 842 
scenes, we simply stop merging when we reach N clusters. 

Choosing the number of situations 
We determine the number of symbols by how predictive 
the symbols are. The naïve approach is to plot the 
prediction accuracy versus the number of clusters. We 
show this for the cluster tree on the 842 scenes from 5 to 200 
clusters in Error! Reference source not found.. The 
predictive 1st order Markov model is, 

1arg max ( | )n n n
pred t t

i
x p x i x −= =  

where (1,..., )n
tx n∈  is the symbol of the n-cluster set at 

time, t . The probability distribution p  is estimated 
empirically from co-occurrence counts on a training set 
after removing symbol repetitions.  Accuracy is calculated 
by averaging the results over a 30-way cross-validation 
(leave 1 day out for test, train on the remaining 29 days). 
 
Naturally, as the number of symbols increases, the 
probability of chance decreases, making the prediction task 
successively more difficult. Hence there is an unfair bias 
towards fewer symbols. So a straightforward use of 
prediction accuracy to choose the number of symbols is not 
appropriate. Instead we would like to measure how much 
information about the future, n

tx , is extractable by a 1st 
order Markov model from the past, 1

n
tx − . The standard 

measure for this is mutual information [10]. Mutual 
information between two variables yields the number of 
bits of information that one variable has about the other: 
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In this case, 1( , )n n
t tp x x −  is again estimated from co-

occurrence accounts over a training set after removing 
symbol repetitions. Finally, in Figure 0-1 we plot the 
number of bits of mutual information per symbol, 

1( ; )n n
t t

n
I x x

B
n

−=  

versus the number of symbols. We notice that there are two 
opposing forces at work in this graph. When using too few 
symbols (<30), information about the underlying sensor 
stream and hence the actual scene is lost and severe 
perceptual aliasing blurs out the predictive cues from the 
past about the future. When using too many symbols (>30), 
less information is lost but the model is less able to 
generalize from its training examples. The result is that in 
between these two extremes (at around 30 symbols) there is 
an empirical optimum number of symbols that balances the 
trade-off between generalizability and perceptual aliasing. 
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Figure 0-1: Number of bits of mutual information per 
symbol between a pair of successive scene symbols over 30 
days. 

Perplexity and prediction accuracy 
Having settled on 30 symbols as the optimal number of 
clusters (for our given cluster tree) we can now answer 
questions about the predictive capacity and perplexity of 
the I Sensed data over a period of 30 days. As noted before 
not every moment presents the same number of 
alternatives for the future. As intuition would suggest, 
some symbols yield more consistent predictions than 
others. The rank-1 accuracies vary from 0% to 60%, but 
don’t seem to have any relationship to the perplexity of the 
symbol. This independence of predictive accuracy from 
perplexity is rather anti-intuitive. This means that the high 
perplexity is caused by the occasional occurrence of an 
unusual symbol after a given symbol, but the top 4 (rank-4) 
predicted symbols do represent the most typical situation. 
For example approx 50% of all typical choices are in the top 
4 choices made by the 1st order Markov model. 
 

7 CONCLUSION 
In our opinion the most important contribution of this work 
is not the specifics of the algorithms we presented but 
rather the proof of feasibility and the empirical results we 
show about the complexity of the sensing and modeling 
required to segment, classify, and predict events in an 
individual’s day-to-day life. Of course, we expect many 
improvements on this work, especially in terms of more 
sophisticated models for prediction and (as always) more 
data with more subjects, but we believe that a few core 
ideas will survive this evolution for a long time to come. 
 
First, insect-like perception via low-resolution but wide 
field-of-view sensors provides just the right level of 
robustness and just the right kind of information needed to 
recognize the large variety of situations over the course of 
an individual’s day. The sensors don’t just focus on the area 
in front of the subject but it captures the periphery and rear, 

thus recording information about the user’s surroundings. 
We have found that by storing this kind of full-surround 
view-dependent information we can do very reliable 
situation matching (which subsumes location matching). 
These types of results are in agreement with the studies on 
insect navigation. 
 
Second, no complicated models based on highly specific 
knowledge about geometry or physics are required to 
match sequences of views in timescales from minutes to 
days. It turns out that all the variations in orientation of the 
camera (caused by the subject’s body movement) and the 
variations in lighting conditions (caused by weather, 
artificial lighting, AGC, etc.) are actually not so great when 
compared to the consistency displayed over many days. 
Truly debilitating variations in sensing conditions that 
prevent us from finding a reasonable match are rare and 
are simply indications of an unusual situation (something 
that is interesting in itself). A person’s life is largely 
classifiable by simple alignment and matching techniques 
at the pixel level! Let’s also not forget that all the 
experiments done were performed with a paltry 32x24 pixel 
image from each of the front and rear views*. 
 
Third, a person’s life is not an ever-expanding list of unique 
situations. There is a great deal of repetition and is 
evidenced by the success of the alignment and matching 
techniques used to define our similarity measure. Also we 
gave quantitative estimates of the actual perplexity of the 
various moments in the subject’s day. This analysis is very 
dependent on the class of symbols used to describe the 
evolution of an individual’s day. However, when we use 
situation-specific symbols the statistical perplexity we 
measured is 4 for 50% of the situations.  This means that in 
50% of our daily situations, we typically limit ourselves to, 
or, are typically limited to only 4 choices. We believe this 
will have deep ramifications for the feasibility of general-
purpose agents. 
 

a past event... ...a future memory  

Figure 0-1: A proposed environment for re-experiencing 
the memories recorded by our I Sensed wearable. Front 
and rear views are projected onto hemispherical screens 
along with audio as the audience sits or stands on a motion 
platform. 

 
We can be certain that we will have the technology 
available to record more and more of our lives for later 
personal exploration and use. If this evolution is 
 

* This will hopefully please those concerned about the privacy issues 
surrounding ubiquitous cameras. 



CLARKSON ET AL.:  LIFE PATTERNS 17 

 

accompanied with a similar evolution in privacy protection 
then we can as a society and as individuals benefit from the 
availability of such records. The work in this thesis can be 
used to provide privacy filters on content (for example, 
sense but don’t record in certain situations), but their actual 
use in practice will undoubtedly be dictated by larger 
forces. 
 
There are many suggestive environments for re-experiencing 
past events recorded via wearable sensors (see Figure 0-1 for 
one possibility). As cameras become smaller and lower power 
and higher resolution, we can imagine the high quality 
recording of individual’s memories. Again we don’t need to 
limit ourselves to just the visual. These memories will become 
valuable commodities depending on the person and activity 
involved. Imagine training “memories” captured from fire 
fighters and police in real high-risk situations or Olympic 
athletes performing at their peak. These records can also be 
used for profiling processes such as the activities of doctors in 
hospitals to understand inefficiencies and the conditions that 
lead to errors. We have shown that at least we won’t be stuck 
with rewind and fast-forward as our only interfaces into the 
years of our lives’ recordings. 
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