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ABSTRACT
Quantifying the relationship between group dynamics and
group performance is a key issue of increasing group per-
formance. In this paper, we will discuss how group perfor-
mance is related to several heuristics about group dynamics
in performing several typical tasks. We will also give our
novel stochastic modeling in learning the structure of group
dynamics. Our performance estimators account for between
40 and 60% of the variance across range of group problem
solving tasks.
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1. INTRODUCTION
We are interested in quantifying group problem solving

performance by analysis of non-linguistic social signals. These
pre-linguistic communication structures have been shown to
capture a large fraction of the dynamics of group interac-
tion, and to be predictive of performance and outcomes [1,
2]. We accomplish this by instrumenting group participants
using Sociometric Badges [3, 2], to record speaking dynam-
ics, tone of voice, body motion, etc. These data are then
analyzed by use of signal processing techniques including
HMM, influence, and similar stochastic models.

The Interaction Process Analysis (IPA) [4] is a traditional
approach for quantifying a general group problem-solving
process based on fine time-grained analysis. In this ap-
proach, an interaction process is treated as a sequence of
events of different categories — giving and analyzing facts,
showing individual approaches for problem-solving, making
group decisions, and releasing tensions developed in decision-
making. The analysis proceeds in the following way: Two
or more trained observers watch through a whole group
problem-solving process and mark events at a resolution of
10˜15 events per minute; The sequences of events marked by
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different observers are then compared and accessed for re-
liability; Heuristic scores about the interaction process are
then computed by counting events in different categories and
are related to group performance.

While they could quantitatively explain the relationship
between the details of an interaction process and the cor-
responding group performance, the traditional methods are
costly in terms of human expert time. As a result, there
are many difficulties in applying these methods in explain-
ing the fine differences about the interaction dynamics and
performances of a large number of groups in solving a large
number of different problems.

On the other hand, we argue that the traditional ap-
proaches could be complemented, automated and unified
with a new approach based on the statistical learning meth-
ods and our capability to collect a massive amount of data
about group interaction processes with embedded devices.
Our reasoning is the following. Different types of activi-
ties in a group problem-solving process have different tem-
poral and interaction statistics — Fact-giving often involves
longer sentences and less parallel-speaking from other speak-
ers while showing-opinions often involves shorter sentences
and more parallel-speaking. Further, the solutions of many
common problems often involve a limited amount of facts,
opinions and voting and thus a limited amount of events of
different categories in problem-specific proportions. Thus
we could estimate group performance based on heuristics
and stochastic methods about these non-semantic cues of
the group process, and potentially find ways to improve it.
In situations when we do not know the structure of the group
problem-solving process, we could use latent-state stochas-
tic models to “project” the time series of non-semantic cues
along the direction of problem-solving performance and dis-
cover the structure of problem solving.

To illustrate our method in quantifying group interaction-
dynamics and problem-solving, we will refer to the interaction-
dynamics data collected by the Sociometric Badges in the
Measuring Collective Intelligence (MCI) study 1 [5]. The
goal of the MCI studies is towards finding the key com-
ponents of collective intelligence, the relationship between
group interaction and group performance, and the methods
to increase collective intelligence. MCI Study 1 involves 42
groups solving 12 problems, with each problem costing a
fixed amount of time ranging from 10 minutes to 1 hour and
all 12 problems costing around 3 hours.

In the rest of the paper, we will summarize some key fea-
ture extraction steps, discuss some heuristics about quanti-
fying group problem solving, and give our stochastic model-



ing that learns the structure of group problem solving.

2. DATA PREPROCESSING
Throughout the MCI studies, we instructed each subject

to wear a sociometric badge through a lanyard around the
neck. Each badge recorded the audio of its wearer, the move-
ments of its wearer (through the accelerometer), the orienta-
tion of the wearer relative to other participating group mem-
bers (through the infrared interface), a sequence of button-
presses (by the wearer at the task boundaries according the
instructions to press the single button on the badge and used
by us to mark the beginnings of tasks), and a periodic se-
quence of messages from the other badges that contained the
senders’ local times and the receiver’s local time (through
the BlueTooth interface). The message sequences were used
to align the signals from different badges in the MCI studies.

Since we are interested in comparing the interactions and
the performances of different groups in solving different prob-
lems, we translated the button-presses into the task bound-
aries by finding the Viterbi path of a hidden Markov model
in which the observations were the time-intervals between
neighboring button-presses and the latent states were the
transitions from task boundaries to later task boundaries.
The parameters of the hidden Markov model were set ac-
cording to the manually marked task boundaries for three
groups that we chose.

We aligned the local times of different badges used in a
same group process through the principle component analy-
sis (PCA) of the messages that contained the senders’ local
times and the receivers’ local times. We subsequently took
the first principle component as the global time and used
the relationships between local-times and the global time to
adjust the times of other time series. When the audio record-
ings contained speaking, we also aligned the local times of
different badges by aligning the pitched segments recorded
by the badges. Due to their duration and spacing statistics,
the pitched segments in different badges could in most cases
be unambiguously aligned (Fig. 1).
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Figure 1: Left: The voice segments in our data set nor-

mally last 0.05 second and no longer than 0.5 second;

They are normally 0.2 seconds apart when appearing in

the same clause. Right: Aligning voiced frames could be

a robust way to align data collected by different embed-

ded devices deployed in close distance; When aligned,

the pitch signals collected by different embedded devices

are normally equal to each other.

We extracted the voiced segments using the 9-parameter
algorithm of Boersma [6], which was reported to have small

pitch determination error and large resolution of determina-
tion of harmonics-to-noise ratio due to its method of com-
puting the short-term autocorrelation function of continuous-
time audio time series. We estimated who is speaking by
comparing the sound intensities of the voiced segments recorded
by different badges. Based on our investigation of a ran-
dom sample of 10 minutes recordings of different groups,
the voiced segment detection algorithm could archive about
95% precision, 90% recall, and the speaker detection al-
gorithm could achieve about 95% accuracy. The speaking
and speaker features, together with other features of the in-
teraction processes, were imported through some scripting
languages into Audacity as label tracks and into Praat as
TextGrid for investigation.

3. PERFORMANCE HEURISTICS
In this section, we will discuss several statistics about the

group problem-solving processes that are related to group
performances.

We will first show the relationship between the total num-
ber of clauses in an interaction process and the correspond-
ing performance in the cases of an easy brainstorming task,
a task to solve analytical IQ problems, and two tasks about
optimization with constraints. This type of relationship is
exploited by people to evaluate the scale of a piece of soft-
ware based on its lines of source code, to evaluate the diffi-
culty of a problem set based on the number of pages need
to write down the full solutions, and to evaluate the profi-
ciency of a person based on the number of work pieces he
could finish in unit time.

In the MCI Study data sets, most of the discourses in the
interaction processes are directly related to the solution of
the problems, since most groups took their tasks seriously
in most of time. The groups spoke the same contents in the
same dynamics to solve the problems up to rephrasing, sen-
tence permutation and the addition of some supplementary
sentences, since the groups were required to solve the prob-
lems together by communication and there was normally one
way to solve each problem. Hence the performances of the
groups were not only determined by what the group mem-
bers said but also significantly correlated with how the group
members spoke. We could not only estimate group perfor-
mance of such a task by counting the number of clauses in
the interaction process but also give a prescription for im-
proving group performance based on factors such as average
clause length and speaking speed.

Performance Heuristics
We count the number of clauses in an interaction process
using a hidden Markov process. The hidden Markov pro-
cess has two latent states. Corresponding to each voiced
segment, the observation of the hidden Markov process is
comprised of whether there is a speaker change and the time
interval between the current and the past voiced segment,
with the two elements of the observation independent of each
other. After it is fitted with interaction processes, such a
hidden Markov process normally contains one latent state
corresponding to no speaker-change and a sub-second inter-
val (approximately 0.2 second) between neighboring voiced
segments, and another latent state corresponding to a signif-
icant probability of speaker-change (normally greater than
30%) and an interval of more than one second. In the rest
of the section, we will use the latent state with longer time



brainstorming score = (number of clauses − 127)/1.4
R2=0.62,p=0.01

group IQ score = (number of clauses − 67)/11
R2=0.6,p=0.006

making judgment score = number of clauses/4
R2=0.62,p=0.13

shopping task score = (number of clauses − 219)/1.8
R2=0.37,p=0.08

Table 1: Each task in the MCI data set involves a
similar preparation stage and a series of similar facts
to be collected, hence we can estimate performance
by counting the number of clauses in a group in-
teraction process. The p-value for making-judgment
task is not significant because many data points are
unusable.

interval as the indicator of the start of a clause, and sub-
sequently compute the number of clauses, as well as other
statistics, of an interaction process.

The overall activity level in a group problem solving pro-
cess gives us information to estimate the overall group per-
formance, and the activity level at a finer time resolution
gives us information to track the performance over time (Ta-
ble 1). In the MCI data set, there exist strong linear rela-
tionships between the number of clauses and performance
score in group brainstorming and group IQ test. The num-
ber of clauses and the performance score in the processes
of the judgment task and the shopping task, on the other
hand, may not have linear relationships while they are pos-
itively correlated. In order to figure out the relationship in
the judgment task and the shopping task, we need either an
understanding of how people really solve the two tasks or
a larger sample of the interaction processes for solving the
two tasks.

4. LEARNING GROUP PROBLEM-SOLVING
STRUCTURE WITH STOCHASTIC MOD-
ELING

While it is a good step forward to quantify the interac-
tion processes using heuristics based on signals recorded by
embedded devices and to explain performances thereby, the
heuristic-based approach has several limitations. Firstly, the
approach still costs a good amount of expert time to fig-
ure out the right heuristics for different types of tasks, and
sometimes the statistics that differentiate good and bad per-
formances could be complex and delicate. Secondly, the ap-
proach is sensitive to and does not discriminate outliers, such
as when a group did not work on what it was supposed to do.
As a result, we will discuss in this section a non-parametric
approach of learning the structure of group problem solving,
that uses mixture of hidden Markov processes (HMPs) mod-
eling to describe the probability measure of an interaction
process, with each component HMP in charge of explaining
the dynamics-performance relationship of solving one of the
four specific types of problems.

There are similarities between the mixture of HMPs mod-
eling and how humans figure out the dynamics-performance
relationships about group problem solving. Given a training
set of group interaction processes of problem solving, labeled

with their problem types and performance scores, a human
observer will intuitively relate the interaction processes to
the corresponding problem types and performance scores.
He will assign meanings to different parts of the processes,
and tell the differences among the dynamics related to dif-
ferent problems and different performance scores in terms
of some statistics such as average clause length, speaking
speed, and the frequency of transitions to different speak-
ers. Given the observation of a new interaction process, he
will compare the new process with the template processes
in the training set, and tell (a) whether the process was in-
tended to solve any problem, (b) which type of problems the
process was intended to solve most likely, and (c) which (la-
tent) performance covariate could best explain the dynamics
in the process.

In the mixture of HMP model, any sequence (St, Ot)t=0···T
of latent-state and observation tuples is sampled with proba-
bility wi from hidden Markov process i out of the n+1 differ-
ent hidden Markov processes parameterized by θi where 0 ≤
i ≤ n. Thus P

`
(St, Ot)t=1···T

´
=

Pn
i=0 wiP

`
(St, Ot)t=1···T ; θi

´
.

Of the n + 1 hidden Markov processes, process θ0 is the
garbage process that explains everything else, and process
1 ≤ i ≤ n explains the dynamics of the interaction processes
in solving task i. The parameters (i.e., the state transi-
tion matrix, and the parameters related to the observation
model) θi = {Ai, Bi} for processes 1 ≤ i ≤ n are functions of
the performance covariate f and the parameters θ0 are con-
stant. We take linear functions in our modeling: Ai(f) =

A
(0)
i + f · αi and Bi(f) = B

(0)
i + f · βi with the constraint

that Ai(f) and Bi(f) are valid. With the given definition,
model fitting follows the standard EM algorithm. After it is
fitted interaction processes for different tasks, the model is
used for finding the most likely mixture component and the
performance covariate argmaxi,f P

`
(St, Ot)t=1···T ; f, θi

´
for

given (St, Ot)t=1···T .

Performance
From the 43 interaction processes in solving the four tasks,
we made 1000 draws of testing sets of 8 processes each,
and corresponding to each test set we used the rest 35 pro-
cesses to train the mixture model. Overall we could estimate
the performance of the processes in the testing sets with
R2 = 60% accuracy (p < 0.01) by using the mixture model
trained with the corresponding training sets and taking the
maximum likelihood performance covariate.

The performance coefficients of the fitted models for the
four tasks (Table 2) tell us not only how different tasks re-
quire different group process dynamics but also how different
performances in the same task correspond to slightly differ-
ent dynamics. Good performance generally requires active
discussions (e.g., the coefficients in the first four rows are
generally positive). On the other hand, the brainstorming
task and the group IQ task both have faster speaker transi-
tions (P(chg.spkr|s1)), shorter clauses (µ(∆t|s1)), and longer
pauses (µ(∆t|s2)) than the group shopping task and the
group judgement task. Further, better performances in the
brainstorming task and the group IQ task normally requires
faster speaker changes, longer clause lengths and less stan-
dard deviations of pauses (σ(∆t|s2)). The different dynam-
ics in the two types of tasks are due to the fact that brain-
storming and IQ problems normally requires a good aptitude
of making discoveries through unusual paths, while a plan-
ning a shopping itinerary and making a judgement normally



b.s. grp.iq shop jdgmnt

P(s1 → s1) .9-f*2e-5 .9-f*3e-5 .9 .9

P(s2 → s2) .2+f*2e-5 .1+f*2e-4 .2 .2

P(chg.spkr|s1) .2+f*1e-5 .3+f*1e-5 .1+f*1e-5 .2

P(chg.spkr|s2) .4+f*1e-5 -.03+f*4e-4 .5 .4

µ(∆t|s1) .2+f*1e-5 .2+f*8e-5 .3 .2

σ(∆t|s1) .1+f*2e-5 .1+f*9e-5 .2 .2

µ(∆t|s2) 2.0+f*7e-5 3-f*3e-4 1.7 2

σ(∆t|s2) 3.2-f*2e-4 7.0-f*2e-1 2.7+f*2e-5 9

Table 2: The HMP parameters for the four tasks
summarize the different dynamics-performance re-
lationships in both the task dimension and the per-
formance dimension. In this table, covariate f rep-
resents performance score, latent state s1 and s2 re-
spectively represent the state of making progress
and the state of not making progress, and the ob-
servations are change of speaker and duration of
clause/silence.

involves making good reasoning. The longer clause lengths
in brainstorming and solving IQ problems correspond to ac-
tively giving information rather than passively accepting an
answer, and the less standard deviations of pauses corre-
spond to consistent performance throughout a task.

We can proceed to simulate the fitted component HMMs
at different performance levels, and sample the performance
heuristics corresponding to different tasks (Table 3). The
heuristics agree with our observation (Sec. 3) about the pos-
itive correlation between active discussion and good perfor-
mance, as well as the different dynamics required by solving
different tasks. For one example, at the 25%, median, and
75% performance levels, the interaction processes to solve
the group IQ problem will respectively produce 10.6, 12.3, 14
clauses and involve 4, 5, 7 speaker changes per minute. For
another example, on average the fractions of clauses longer
than 4 words in planning shopping itinerary and making
judgment are noticeably longer than the fractions in brain-
storming and solving group IQ problems.

We are interested in quantitatively reasoning about the
different approaches to improve group performance through
our modeling. Effectively mixing the ideas of the group
members (e.g., through encouraging faster speaker turns and
shorter sentences) generally helps improving performance.
Hence we would encourage group members to actively con-
tribute to problem solving but not to manipulate it. Groups
with longer speaking turns in the MCI brainstorming and
Group IQ tasks do not necessarily have better scores in
these two tasks. Hence if these dynamics-performance re-
lationships in the MCI data are typical we would encourage
future groups to have shorter turns in similar tasks such as
the MCI brainstorming and group IQ tasks.

5. CONCLUSIONS AND DISCUSSIONS
In this paper, we discussed our approach to make em-

bedded devices understand group problem-solving. We do
so by relating the performance score with how the group
solves the problem for any group problem-solving process.
Specifically, by using statistics such as number of clauses,
number of vowels, speaking speed, clause length, and cy-
cles of serial speaking and parallel speaking, we could es-
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25% 250 10.6 4 2 0.8
50% 300 12.3 5 1.5 1.2
75% 350 14.0 7 1.2 1.4

(a) This table is constructed by sampling several perfor-
mance statistics at different performance levels from the
trained hidden Markov model of solving the MCI brain-
storming task. It can be used to look up the MCI brain-
storming performance.

task 1 word 2 words 3 words >3 words

brainstorming 33% 19% 12% 36%
group IQ 36% 18% 11% 35%

itinerary planning 32% 17% 10% 41%
making judgment 32% 16% 10% 42%

(b) This table is constructed by sampling clause lengths
at the median performance level from the trained hidden
Markov models of all four MCI tasks. It captures the fact
that the MCI brainstorming and group IQ tasks involve
more clauses that are 4 words or less.

Table 3: A stochastic model of group problem solv-
ing enables us to explore the different heuristics of
estimating performance without conducting further
expensive experiments.

timate group performance score with the R-squared value
up to 40%. By stochastic modeling of the group problem-
solving process that is conditioned by the type of task and
the performance score, we could learn the structure of group
problem-solving and achieve higher accuracy in estimating
performance score. Our code is available at http://vismod.
media.mit.edu/vismod/demos/influence-model/index.html
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