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ABSTRACT 

We describe SocialCircuits, a platform capable of measuring the 
face-to-face and phone-based communication network of a real-
world community.  This platform uses commodity mobile phones 
to measure social ties between individuals, and uses long and 
short term surveys to measure the shifts in individual habits, 
opinions, health, and friendships influenced by those ties.   

We also describe the flagship experiment using this platform, a 
year-long study of an entire university undergraduate dormitory.  
Lastly, we discuss some of the key challenges we met in building 
and deploying the platform, including mobile phone hardware and 
software selection, privacy considerations, community selection 
and recruitment, and techniques for minimizing data loss. 

Categories and Subject Descriptors 
H.0 [Information Systems], I.2.1 [AI Applications]  

General Terms: Algorithms, Measurement, Human Factors 

Keywords: Experiment Design, Social Network Analysis, 
Mobile Computing 

1. INTRODUCTION 
The most important interactions that we have in our lives with 
others are those that occur face-to-face.  In the past, specialized 
electronic sensors and badges have been used to measure this 
face-to-face interaction.  For instance, the Sociometric badge [6] 
was designed to identify human activity patterns, analyze 
conversational prosody features and wirelessly communicate with 
radio base-stations and mobile phones. Sensor data from these 
badges has been used in various organizational contexts to 
automatically predict employees’ self-assessment of job 
satisfaction and quality of interactions.  

 

 

 

 

 

 

Cell phones are a ubiquitous and natural part of our modern social 
lives.  They provide a convenient tool for measuring social 
connectivity features related to phone calls and text messages.  
Sensor-enhanced smart phones can even determine personal 
location and nearness of friends. Several recent projects have used 
pervasive, mass-market mobile phones as active social sensors. 
Eagle and Pentland [1] coined the term Reality Mining, and used 
mobile phone Bluetooth transceivers, phone communication logs, 
and cellular tower identifiers to identify the social network 
structure, recognize social patterns in daily user activity, infer 
relationships, identify socially significant locations, and model 
organizational rhythms. 

We have built a scalable and reusable platform that transforms 
smart phones into an advanced social sensor capable of capturing 
the relationships and influences within a dense community.  This 
platform is needed because there are not many such data sets for 
the research community to use.  Experiments of this type have a 
high engineering and deployment costs, and researchers often do 
not have the skills to build and deploy the platforms. 

During the academic year of 2009-2010, we deployed our 
platform on an undergraduate community.  During the course of 
the experiment we collected over 3 million co-location samples, 
over 60,000 phone calls, and over 20,000 text message samples, 
forming the world’s largest dataset capturing face-to-face 
diffusion and social influence behaviors [3, 4]. In this paper, we 
describe our platform capabilities, illustrate the new types of 
research questions it can help answer, and provide guidelines for  
other researchers interested in following our approach. 
 

2. SYSTEM CAPABILITIES 
In this section, we describe our data-collection platform designed 
to collect dense, long-term social interaction data in naturally-
occurring communities. Our platform is based on the Windows 
Mobile 6.x mobile operating system. Participants use experiment 
devices as their primary mobile phones by transferring their 
existing voice plans. 
 

 This platform below has been successfully tested with all four 
major US mobile operators, and 6 different smart-phone handsets.  
The source code for this Windows Mobile platform is available 
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online (http://mob.media.mit.edu). The specific capabilities of our 
data collection platform are outlined below: 

Detect Bluetooth wireless devices in proximity: Bluetooth and 
other wireless-radio based co-location techniques have been used 
to identify the nodes and edges in the social network [1].  

Detect Wi-Fi (WLAN 802.11b) access point identifiers: Since 
most urban areas have a high density of Wi-Fi access points, these 
identifiers can be used to infer homogeneity and entropy of 
location and proximity patterns, e.g. is there a cluster of users who 
tend to visit similar locations frequently?  

Capture Phone and SMS logs: The temporal and frequency 
features extracted from communication logs can be used to infer 
strength and type of social connection. 

Background Scan Manager: This component initiates 
background scans for Bluetooth and Wi-Fi at user-specified 
periods. The default time interval between scans is 5 minutes. As 
discussed in the section 4, the choice of scan interval also impacts 
the phone’s battery life. The scan manage module also ensures 
that Bluetooth and WLAN 802.11 radios on the phone are 
activated as necessary. 

On-Device Survey Launcher: The platform supports launching 
single-screen daily surveys, as soon as subjects turned their 
phones on in the morning. During four months of our study, this 
survey application asked questions about common flu symptoms 
that might have been exhibited over the previous 24 hours.  

On-Device User Feedback Engine: Daily surveys also had the 
ability to pull images and data from the central server, allowing 
use of feedback about other subjects’ responses or changing world 
conditions.  For two months of our study, we used this 
functionality to learn about the effect of social feedback on daily 
health habits.  An example is shown in Figure 1. 
 

 
 
 

 
 
Over-the-Air Application Updater: The platform supports a 
native updater application that is designed to fetch compressed 
installer files (.cab format) from a remote server.  This component 
enables seamless remote deployment of software updates, bug 
fixes, and new experiment modules. The client downloads updates 
opportunistically, when 802.11 WLAN access and adequate disk-
space are available.  
Custom Music Player: In order to study the diffusion of music, a 
custom music player allows participants to play, share, rate and 
search through the music library.  Participant in our deployments 
have access to over 1500 independent music tracks of different 
genres, sourced under the Creative Commons license. All client 
application events are logged on the server.  
 
Flexible Integration with Web-Based Surveys:  Our platform 
integrates with commercial, off-the-shelf web tools for launching 
surveys for a large number of participants. A flexible, python-
based back-end post-processing infrastructure efficiently parses 
through exported comma-separated value (CSV) survey 

responses, and generates detailed MySQL tables per user, used for 
statistical analysis. In the experiment described in section 3, 
monthly questionnaires spanning tens of pages were used to 
collect training labels related to subjects’ relationships, health, 
music tastes, political opinions, attitudes, etc.  

3. EXAMPLE APPLICATION: THE 
ADOPTION OF POLITICAL OPINIONS 
 

This mobile platform was successfully deployed in a real-world 
setting with an university undergraduate dormitory for an 
academic year, with a total of over sixty-five participants. The 
participants represent eighty percent of the total population of the 
dormitory—the remaining twenty percent of residents declined to 
participate in this study citing privacy concerns. The 
undergraduate dormitory is known for its pro-technology 
orientation and tight-knit community. 
 

The research goal of this experimental deployment was to model 
the adoption of opinions and social behaviors within this 
community. Literature across many social sciences suggests that 
our opinions and behaviors diffuse over our existing social 
networks. However, to date there has been no method to 
automatically capture fine-grained social interactions between 
people and then use the data to better model the diffusion process. 
It has been shown that surveys and other human-intensive 
methods are not scalable and can be highly inaccurate due to 
recollection biases. 

In addition to mobile phone data, as training labels, political 
opinions were sampled in this community three times –
September, October, and then November (within 3 days of the 
presidential election). The survey was designed as a Likert scale 
and included the following questions: 

• ‘Are you liberal or conservative?’  
7-point scale, from ‘extremely conservative’ to ‘extremely 
liberal’ 

• ‘How interested are you in politics?’  
4-point scale, from ‘not interested’ to ‘very interested’ 

• ‘What is your political party preference?’  
7-point scale, from ‘strong Democrat’ to ‘strong 
Republican’ 

Using our platform, it is possible to model the dynamic exposure 
to different opinions for every individual. Contact between two 
individuals is a function of different mobile phone features— e.g. 
time spent together during the day or in classes, time spent 
socializing in the evenings or late at night, phone calls and SMS’s 
exchanged, the count of interactions or the total duration of 
interaction.  It is possible to estimate two types of exposure based 
on these mobile phone features:  

Normalized exposure represents the average of all opinions a 
person is exposed to on a daily basis, weighted by the amount of 
exposure to different individuals and their self-reported opinions.  
Cumulative exposure represents the magnitude of a particular 
opinion that a person is exposed to on a daily basis, and is a 

Fig 1. This image was included in an on-device health survey. The red 
arrow represents the past responses of subject, the green represents 
the subject’s closest friends (as determined by experimental data) and 
the blue represents the entire community. 
 



function of the amount of contact with different individuals and 
their self-reported opinions. 

 

 

 

 

 

 
 
Modeling exposure to different opinions allows us to predict 
whether a person is likely to adopt or reject new opinions. 
Accounting for the normalized exposure to different opinions 
helps predict an individual’s future opinions better than using 
his/her past opinions and community-wide influences.  For the 
‘interest in politics’, ‘political party preference’ and ‘liberal or 
conservative’ questions, factoring in automatically-captured 
exposure explains an additional 15% variance, additional 9% 
variance and additional 6% variance respectively (over using past 
opinions alone). Exposure to different political opinions seems to 
play a bigger role for freshmen. For freshmen, factoring in 
‘automatically-captured’ exposure improves the explained 
variance by 22%, 25% and 30% respectively, for the three 
questions [4].  
 
This example illustrates how our mobile platform can be 
used to model hitherto immeasurable aspects of human 
behavior. In the next section, we provide guidelines on how 
other researchers can devise similar experiments using our 
tools.  
 

4. GUIDELINES FOR FUTURE REAL 
WORLD DEPLOYMENTS 
 

In this section, we provide our perspective on key issues that must 
be addressed by other researchers, based on our lessons learnt 
over a year of deployment. 

4.1 Mobile Phone Sensors  
A key decision related to hardware selection is sensing 
capabilities.  

Absolute Location -- GPS, cell tower triangulation, and Wi-Fi-
based localization (e.g. Skyhook) are location-sensing 
technologies with varying resolutions available on mobile phones. 
Wi-Fi triangulation and signal strength can also be used to 
calculate location on a room-level resolution.  However, due to 
the 5-minute scan interval in our platform, it is not possible to use 
popular location tracking techniques like particle filters or Kalman 
filters [2]. 

Co-Location (Proximity) – Most mobile phones are equipped 
with class 2 Bluetooth radio transceivers, which can detect 
Bluetooth devices within a maximum range of 10m.  However, 
most commodity mobile phones do not provide signal strength 
information. Also, a device will not be detected unless the 
Bluetooth radio has to be set to the ‘discoverable’ mode, which is 
often disabled by default as a security feature.  It is necessary to 
programmatically turn this feature on. 

Context and Activity – 3-Axis accelerometers can be used to 
detect many physical activities, including walking, running, or 
sleeping [5], although the classification accuracy is reduced if 
there is no fixed body position for the mobile phone. 
Accelerometer data can also be used to detect whether the subject 
is carrying the mobile phone—if the phone hasn’t moved for 13 
continuous hours, then it is probably sitting on a desk and not 
being used by the subject. 
 

4.2  Mobile Phone Usability 
In order for subjects to use mobile devices over extended periods 
of time, the phone platform must be user-friendly.  Battery life, 
physical dimensions and weight of the device, available device 
RAM, and operating system interface are all key factors that 
impact long-term usability.  Running background scan code every 
5 minutes on a phone decreases its battery life by approximately 
15-20%, for instance, but  it is essential that this decrease does not 
cause the total battery life to dip below the 16-hour level, where a 
fully charged phone will power off before the end of the day. 
Similarly, users have different preferences for phone ergonomics--
people tend to leave heavy and bulky devices at home, instead of 
carrying them all the time. If a device has low RAM, when the 
phone launches scanning process every 5 minutes, it may slow 
down applications and UI response time—an effect seen with both 
iPhone and Windows Mobile devices. Finally, the OS itself plays 
a key role in the usability of the device, and subsequently, the 
level of engagement participants have in the long-term 
experiment. iPhone and Android devices have easy-to-use  
interfaces with thousands of available applications. 
 

4.3 Platform Openness and Cross-Carrier 
Support  
Today, not all phone platforms are equally open—the programmer 
often does not have access to the sensors and features that are 
required.  For instance, an iPhone implementation of our code can 
only run on jailbroken iPhones due to the inability to run 
background processes with the official Apple SDK.  In our case, 
although Windows Mobile devices did not have a compelling 
interface, they did have the platform API support and cross-carrier 
compatibility (both GSM and CDMA) required for a high-density 
deployment. In the future, we expect that both Android and 
iPhone devices will support CDMA operators, which would make 
them suitable for experiments of this nature. For initial 

Fig 2. Normalized face-to-face exposure calculated for one 
individual over 2 months. The upper graph (red) represents 
exposure to republicans and the lower graph (blue) represents 
exposure to democrats. The vertical axis represents the intensity 
of opinion (i.e. 0 = independent, 1= slight democrat, 2= 
democrat, 3=strong democrat, and similarly for republicans).  
The horizontal axis is time over days. Overlaid vertical lines 
represent the days of the election debates and the day of 
presidential elections (4th Nov). 
 



deployment, we bought mobile devices and preloaded them with 
certificates and applications but this approach is not scalable past 
~200 phones. In the future, we expect that it will be possible to 
deploy large-scale experiments by the installation of a single 
application through an AppStore.   
 

4.4 Community Selection 
For an experiment to measure social diffusion in a tight-knit 
community, participant density is more important than volume.  In 
our case, it was important to account for as many factors as 
possible to why a particular subject changed their behavior, and 
hence necessary to capture as many of that subject’s friends and 
acquaintances as possible 

For this experiment, we chose a small dorm of around 90 students 
that was physically and socially distant from the rest of the 
campus.  Over 65% percent residents reported that a majority of 
their friends and acquaintances lived inside the dorm.  Other 
considerations might be how often the members of the community 
carry their cell phones, and whether they have concerns about 
privacy. 
 

4.5 Community Preparation 
Even after IRB approval, a few of our potential subjects were 
hesitant about participating in the experiment due to privacy 
concerns. Ironically, it was the very traits that we selected the 
community for that affected this behavior—high social cohesion 
and co-influence within the community meant that when a few 
people had concerns, those concerns spread to their network. The 
most important potential privacy concern in this community was 
participant re-identification based on mobile phone data and 
survey responses. To alleviate potential privacy concerns, steps 
were to taken to hash, anonymize and remove any personal 
identifiers from the data at each stage of the collection process.  

Another concern was the social pressure applied to participate.  
The high density required for participation, coupled with the 
sensitivity of the questions asked during the monthly survey, 
made a few potential participants uncomfortable.  We alleviated 
this concern by decoupling the survey responses from the act of 
participation—answering surveys became a lucrative component 
that was not mandatory for participation in the experiment.  All of 
the subjects filled out the surveys anyway, and were more 
comfortable about doing so. 
 

4.6 Long-Term Reliability 
With any long-term experiment using complex equipment, there 
may be unforeseen technical issues.  It is important to make sure 
that technical issues are rapidly addressed, without any significant 
data loss.  Below are practical suggestions from our experience. 

Get help on the ground: The experimenter cannot be around all 
the time to identify the various kinds of issues that tend to come 
up.  They also may have trouble tracking down individual subjects 
who have software or hardware issues.  We hired two of our 
subjects to help solve simpler technical issues and be a resource 
within the dorm for experiment-related questions.    

Encourage participants to report problems:  As much as we 
asked for bug reports, the subjects’ time constraints and aversion 
to ‘annoying’ us would mean that a problem would go undetected 
for days, even if several subjects were encountering the same 
difficulty.  This issue went away when we offered a ‘bounty’ on 
bugs—first report of a certain issue was paid $10. 
Backup on-device data at multiple locations:  In addition to 
syncing new data with the server every 24 hours, data was also 
backed-up on the phone so that every month or two, any missing 
data could be collected. 

Use minimal number of different handsets:  Even phones that 
run the same operating system may have crucial differences in the 
specifics of file system layout, registry keys, and sensor 
performance.  Supporting more than one model inflates 
development time and may introduce costly bugs.  

Avoid on-device flash memory:  We used external memory 
cards to store the data.  However, there is a finite number of 
writes to disk that are advisable for flash memory before risk of 
disk corruption.  Writing to disk every 5 minutes may cause the 
disk to fail catastrophically without warning, after about 3 
months. 

Pay subjects incrementally:  Paying subjects one dollar per day 
that they filled out on-phone surveys yielded a high response rate. 
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