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Abstract—We present the design, implementation and deploy-
ment of a wearable computing platform for measuring and
analyzing human behavior in organizational settings. We propose
the use of wearable electronic badges capable of automatically
measuring the amount of face-to-face interaction, conversational
time, physical proximity to other people, and physical activity
levels in order to capture individual and collective patterns of
behavior. Our goal is to be able to understand how patterns of
behavior shape individuals and organizations. By using on-body
sensors in large groups of people for extended periods of time in
naturalistic settings we have been able to identify, measure, and
quantify social interactions, group behavior, and organizational
dynamics. We deployed this wearable computing platform in
a group of 22 employees working in a real organization over
a period of one month. Using these automatic measurements,
we were able to predict employees’ self-assessments of job
satisfaction and their own perceptions of group interaction
quality by combining data collected with our platform and e-
mail communication data. In particular, the total amount of
communication was predictive of both of these assessments, and
betweenness in the social network exhibited a high negative
correlation with group interaction satisfaction. We also found
that physical proximity and e-mail exchange had a negative
correlation of r = −0.55 (p < 0.01), which has far-reaching
implications for past and future research on social networks.

Index Terms—Social computing, wearable computing, socio-
metric badges, organizational behavior.

I. INTRODUCTION

THE STUDY of human behavior has always intrigued

social scientists interested in enhancing organizational

effectiveness and individual well-being in the workplace. Or-

ganizational behavior is a multidisciplinary field that seeks

knowledge of behavior in organizational settings by systemat-

ically studying individual, group, and organizational processes.

Some of the questions it tries to answer are: How can goals be

set to enhance people’s job performance? How may jobs be

designed so as to enhance employees’ feelings of satisfaction?
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Under what conditions do individuals make better decisions

than groups? What can be done to improve the quality of

organizational communication? How can leaders enhance the

effectiveness of their teams? [1]. In this paper we set the

foundations for developing the technology and methodology

that will enable social scientists to automatically measure

individual and collective patterns of behavior, predict human

behavior from unconscious social signals, identify social affin-

ity among individuals, and enhance social interactions by

providing real-time feedback. Our purpose is to shed some

light on the questions posed by the field of organizational

behavior.

Standard methods to measure and evaluate human behavior,

such as surveys, often suffer from subjectivity and memory ef-

fects. In [2] Pentland envisioned a device that could accurately

and continuously track the behavior of hundreds of humans

at the same time, recording even the finest scale behaviors

with great accuracy. Such a device would replace expensive

and unreliable human observations with automated, computer-

mediated ones. The automatic discovery and characterization

of face-to-face communication and social interaction would

allow us to gather interaction data from large groups of people.

This could potentially remove two of the current limitations

in the analysis of human behavior: the number of people that

can be surveyed, and the frequency with which they can be

surveyed.

Data mining of e-mail has also provided important in-

sights into how organizations function and what manage-

ment practices lead to greater productivity [3], but important

communications are usually face-to-face [4]. Some previous

research also anticipates the incompleteness of data based on

e-mail communication and surveys [5]. Today people carry cell

phones and wear radio frequency ID (RFID) badges. These

body-worn sensor networks mean that we can potentially

know who talks to whom, and even how they talk to each

other. Organizations will become truly sensible when they start

deploying hundreds or thousands of wireless environmental

and wearable sensors capable of monitoring human behavior,

extracting meaningful information, and providing managers

with group performance metrics and employees with self-

performance evaluations and recommendations [6].

Even though some devices already incorporate sensors ca-

pable of capturing context information, we believe that there

is no single platform capable of measuring a wide range

of variables such as the amount of face-to-face interaction,
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non-linguistic social signals, location, physical proximity to

other people, and context information to facilitate the study of

human behavior in organizations.

In this paper we present the design, implementation and

evaluation of a wearable computing platform for measuring

and analyzing human behavior by capturing and analyzing

the aforementioned variables. We have instrumented a group

of 22 employees working in a real organization for a period

of one month to study communication patterns (face-to-face

interaction vs. e-mail), proximity to other people, physical

activity levels, and conversational time. The remainder of the

paper is organized as follows: section II describes the back-

ground and previous work on socially-aware wearable plat-

forms and electronic badges. Section III describes the proposed

technology. Section IV describes the proposed methodology

to automatically measure organizational behavior. Section V

presents related theory and our hypotheses. Section VI presents

experimental results. Section VII examines different applica-

tions of this wearable computing platform. Finally, section

VIII presents the conclusions and future work.

II. BACKGROUND AND PREVIOUS WORK

A. Socially Aware Systems

Psychologists have firmly established that social signals

are a powerful determinant of human behavior and speculate

that they may have evolved as a way to establish hierarchy

and group cohesion [7], [8], [9]. Most culture-specific social

communications are conscious, however other social signals

function as a subconscious collective discussion about relation-

ships, resources, risks, and rewards. In essence, they become

a subconscious “social mind” that interacts with the conscious

individual mind. In many situations the non-linguistic signals

that serve as the basis for this collective social discussion are

just as important as conscious content for determining human

behavior [7], [8], [9], [10], [11].

How can socially-aware systems change human communi-

cations? How can knowing social context and in particular

speaker attitude help? A simple way is to provide people

with feedback on their own interactions. Did a person adopt

a forceful attitude during a negotiation? Did a person project

a helpful, empathic attitude during the teleconference? Such

feedback can potentially head off many unnecessary problems.

Measurements of social signaling can also help group in-

teractions. Social scientists have carefully studied how groups

of people make decisions and the role of social context in

that process. Unfortunately, what they have found is that

socially mediated decision-making has some serious problems,

including group polarization, groupthink, and several other

types of irrational behaviors that consistently undermine group

decision-making [8], [9], [10], [12]. To improve group function

one needs to be able to monitor social communication and

provide real-time intervention. Human experts can do that

(they are called facilitators or moderators) but to date machines

have been blind to the social signals that are such an important

part of human group function. The challenge, then, is how to

make a computer recognize social signaling patterns.

Similarly, the ability to measure social variables like interest

and trust ought to enable more productive discussions, while

the ability to measure social competition offers the possibility

of reducing problems like groupthink and polarization. If a

computer can measure the early signs of problems, then it can

intervene before the situation becomes unsalvageable.

Our research group (the Human Dynamics Group) at the

MIT Media Laboratory has developed several socially aware

platforms to measure different aspects of social context. We

describe some of these platforms next:

1) The SocioMeter: A wearable sensor package designed

to measure face-to-face interactions between people with an

infrared (IR) transceiver, a microphone, and two accelerome-

ters [13]. It was used to learn social interactions from sensory

data and model the structure and dynamics of social networks.

2) VibeFones: The VibeFone application is mobile social

software that uses location, proximity and tone of voice to

gain a sophisticated understanding of people’s social lives by

mining their face-to-face and phone interactions. It was used

in several applications such as automatic characterization of

social and workplace interactions, a courtesy reminder for

phone conversations, and a personal trainer for dating encoun-

ters. This application augments traditional means of gathering

social interaction data (surveys or ethnographic studies) and

speech data. The mobile phone platform is highly conducive

to collecting long-term continuous data and sampling the user

for training labels [14].

3) Social Motion: In this application two types of sensors

were used: proximity sensors and motion sensors. Gips [15]

showed that these sensing modalities could be incorporated

into current mobile devices without disrupting the usage

patterns and form factors to which people have grown accus-

tomed. He also demonstrated that these sensor signals con-

tained the information necessary to infer the underlying social

structure of groups of people about which no information is

known a priori by identifying groups of friends taking part

at a career fair, team membership of students participating

in a treasure hunt game, and company affiliation of visitors

attending a conference.

B. Electronic Badges

Wearable ID badges are common devices that employees

wear in large organizations to identify themselves to others

or to gain access to certain locations or information. The

Active Badge developed at Xerox PARC in 1992 was one

of the first attempts to augment inanimate name tags with

electronics. Containing only a small microprocessor and an

infrared transmitter, this badge could broadcast the identity of

its wearer and trigger automatic doors, automatic telephone

call forwarding, and computer displays [16].

More complex badge platforms have been developed after

the Active Badge. In 1996, the Thinking Tags [17] were the

first computationally augmented name tags that were capable

of displaying how much two people at a conference or meeting

had in common. Two years later they evolved into the Meme

Tags [18], allowing conference participants to electronically

share brief ideas or opinions through a large LCD screen.

This later became the nTAG System, a commercial solution

to improve, measure, and automate meetings and events [19].
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The Wearable Sensor Badge developed at Philips Research

Labs in 1999 [20] was capable of detecting simple pre-

ambulatory activities using an accelerometer. The iBadge [21]

was designed to be worn by children to capture interactions

with teachers and common classroom objects. The UbER

Badge [22], developed at the MIT Media Laboratory, is a

research platform for facilitating interaction in large groups

of people. A more recent research platform developed jointly

by Intel Research and the University of Washington is the

Mobile Sensing Platform. It is a multimodal sensor board that

captures data from seven different sensors and is primarily

designed for embedded user activity recognition [23].

The best known commercially available badge system is

the 802.11-based Vocera Communications System [24]. Users

interact through wearable badges that can be clipped to coat

pockets, worn as pendants, or carried in holsters. The system

centers on a server that maintains voice dialing phrases, badge

session identifiers, e-mail addresses, telephone numbers, and

names. Our wearable electronic badge has a similar form

factor to the Vocera badge since the latter is already accepted

by thousands of users in hospitals, retail stores, and service

organizations [25].

III. SOCIOMETRIC BADGES

In [26] we presented the design of a wearable communi-

cator badge, a push-to-talk system capable of playing audio

messages and reminders through a speaker. Since then, the

communicator badge has evolved into what we call a socio-

metric badge, a device whose main purpose is to automatically

capture individual and collective patterns of behavior. We

have manufactured three hundred sociometric badges and used

them in real organizations to automatically measure individual

and collective patterns of behavior, predict human behavior

from unconscious social signals, identify social affinity among

individuals working in the same team, and enhance social

interactions by providing feedback to the users of our system

[27]. Figure 1 shows a picture of our sociometric badge.

A. Capabilities

The sociometric badges have a small form factor, are

comfortable to wear over long periods of time, and have a long

battery life. To achieve this the badges were designed for very

low power wake-up directly from sensor stimuli. In addition to

some of the main features offered by previous badge platforms,

the sociometric badges are capable of:

• Recognizing common daily human activities (such as

sitting, standing, walking, and running) in real time

with at least 80% accuracy on average, using a 3-axis

accelerometer combined with a mobile phone containing

a second accelerometer [28].

• Extracting speech features in real time to capture non-

linguistic social signals such as interest and excitement,

the amount of influence each person has on another

in a social interaction, and unconscious back-and-forth

interjections, while ignoring the words themselves in

order to assuage privacy concerns [29].

Fig. 1. Wearable sociometric badge.

• Communicating with radio base stations in the 2.4 GHz

frequency band for sending and receiving information

to and from different users, and transferring data. The

base stations can either be other badges placed at fixed

locations or compatible radio base stations, such as the

Plug sensor network developed in the Responsive Envi-

ronments group at the MIT Media Laboratory [30].

• Performing indoor user localization by measuring re-

ceived signal strength and using different triangulation

algorithms that can achieve position estimation errors as

low as 1.5 meters [31], [32].

• Communicating with Bluetooth enabled cell phones,

PDAs, and other devices to study user behavior, detect

people in close proximity, and even predict people’s day-

to-day and person-to-person communication with more

than 95% accuracy [33].

• Capturing face-to-face interaction time using an IR sensor

that can detect when two people wearing badges are

facing each other within a 30◦-cone and 1-m distance).

Choudhury [13] showed that it was possible to detect

face-to-face conversations using the SocioMeter badges

with 87% accuracy when looking at segments that lasted

at least one minute.

B. Technical Specifications

Each badge uses an omni-directional MEMS (Micro

Electro-Mechanical Systems) microphone (Knowles Acous-

tics, SPM0103-NE3) to capture the user’s speech and extract

different speech features without recording the actual speech

signal. The microphone is connected to a non-inverting op-

erational amplifier (Analog Devices, AD8542), with a high-

pass filtering cut-off frequency of 85 Hz and a low-pass cut-

off frequency of 4,000 Hz. The amplified microphone signal

is then applied to an array of micro-power single-op-amp

Sallen-Key band-pass filters that divide the speech frequency

spectrum into four octaves: f1 from 85 to 222 Hz, f2 from 222

to 583 Hz, f3 from 583 to 1527 Hz, and f4 from 1527 to 4000

Hz. A diode-capacitor peak detector is used after each band-

pass filter to obtain the spectral envelope in each frequency

band. These four spectral envelopes are used to segment the

audio signal into speaking and non-speaking regions. A 3-

axis MEMS accelerometer (Analog Devices, ADXL330) is
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Fig. 2. Wearable sociometric badge’s block diagram.

used to detect when a person is moving and identify different

activities such as sitting, standing, walking, or running. An

IR transceiver module (Vishay, TFDU4300) is used to detect

when two people are facing each other. A bridged-output

audio power amplifier (Analog Devices, SSM2211) drives an

electromagnetic speaker on the badge to play back messages

and reminders.

The main processing unit is an ARM microcontroller

(Atmel, AT91SAM7S256). A 2.4 GHz wireless transceiver

(Chipcon, CC2500) and a class 2.0 Bluetooth module (BlueRa-

dios, BR-46AR) have been incorporated for enabling wireless

communications with fixed base stations and other Bluetooth-

enabled devices. A microSD memory card socket has been

included for storing data when the user is out of range of

a fixed point or when the badge is used as a self contained

sensor package. The badge is powered by a 950 mAh lithium-

polymer battery rechargeable through USB. In addition, data

can also be transferred through the USB port. The dimensions

of the badge inside the plastic enclosure (as shown in figure 1)

are 4.5 x 10 x 2 cm and the total weight including the battery

is 110 grams. Figure 2 shows a block diagram of the badge.

IV. METHODOLOGY

In this section we describe the methodology for automati-

cally measuring human behavior in organizational settings us-

ing sociometric badges. This methodology can also be applied

to other wearable sensing devices with similar capabilities.

Our proposed approach to capture social signals and mea-

sure human behavior has several advantages over existing

methods such as direct observation by humans, the use of per-

vasive cameras to videotape social interactions, or the use of

surveys. Direct observation of humans by humans is expensive

and limited to a few subjects per observer, and observers do

not always agree. Deploying pervasive cameras is extremely

expensive and their range of measurement is constrained to a

particular place. The use of surveys is subjective, inaccurate,

and time consuming. In contrast, being able to automatically

capture the behavior of hundreds of people at the same time

using the technology described in section III allows us to

perform fine-grained analyses of an organization’s minute-to-

minute operations without the need of human observers.

Fig. 3. Face-to-face interaction is detected when the receiving badge’s IR
sensor is within the transmitting badge’s IR signal cone.

A. Detecting Face-to-Face Interactions

IR can be used as a proxy for the detection of face-to-

face interaction between people. In order for one badge to

be detected through IR, two sociometric badges must have

a direct line of sight. The receiving badge’s IR sensor must

be within the transmitting badge’s IR signal cone of height

h ≤ 1 meter and radius r ≤ h tan θ, where θ = ±15◦ for

the IR sensor described in section III-B. Figure 3 shows a

receiving badge’s IR sensor within the specified range. Every

time an IR signal is detected by a badge, we say that face-to-

face interaction may occur.

We define the total amount of face-to-face interaction time

per person as the total number of consecutive IR detections

per person multiplied by the IR transmission rate.

B. Measuring Physical Proximity and Location Using Blue-

tooth

The sociometric badges can detect other Bluetooth devices

in close proximity in an omni-directional fashion (within a

10-meter radius). In the past, this functionality has been used

to identify location, behavioral patterns, and social ties [33].

It is possible to determine approximate location from base

stations and other mobile badges using Bluetooth technology.

If a person is detected within the Bluetooth transceiver’s

range, it does not necessarily mean that they are interacting

with each other. However we can ascertain that they are in

close proximity to each other, easily reachable for face-to-face

interaction. It is possible to obtain more accurate proximity

measurements (one-meter resolution) by using RSSI (received

signal strength indicator) values from the Bluetooth or wireless

transceiver.

C. Detecting Physical Activity Levels

The 3-axis accelerometer signal is sampled at fs = 250
Hz, which should be able to capture the range of human

movement and could be as low as 30 Hz since 99% of the

acceleration power during daily human activities is contained

below 15 Hz [34]. The range of values for the accelerometer

signal varies between −3g and +3g, where g = 9.81 m/s2

is the gravitational acceleration. To normalize the signals, a

calibration procedure is necessary to obtain the absolute value

of gravity, |~g|, and the zero gravity point ~g0 = (gx0
, gy0

, gz0
).

To obtain these values, one badge should be slowly rotated in

all directions.

The accelerometer samples recorded from each badge ~ai =
(axi

, ayi
, azi

) are normalized as follows:

~a′
i =

~ai − ~g0

|~g|
(1)
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The acceleration Signal Vector Magnitude (SVM) provides

a measure of the degree of movement intensity that includes

the effect of signal variations in the three axes of acceleration

[35]. The SVM is calculated on the normalized ith acceleration

sample as follows:

SVMi = |~a′
i| =

√

a′2
xi

+ a′2
yi

+ a′2
zi

(2)

To distinguish between periods of activity and rest the

average SVM is calculated over one-minute segments:

SVM(k) =
1

fsT

fsTk
∑

i=1+fsT (k−1)

SVMi (3)

where T = 60 is the time segment (in seconds) over which

the average SVM is calculated, and k = 1...K is the number

of minutes a person was wearing the badge during the day.

When the badge is static and not being worn SVM(k) ≤
1, since only the component of gravitational acceleration

is detectable. Individual daily activity level is defined as

SVMd = 1/K
∑K

k=1 SVM(k), where K is the number of

minutes that a person was wearing the badge, and d is the

date.

We say that a person is in a high activity level when their

activity level is one standard deviation above the mean value of

everyone wearing the badge at the same time. A person is in a

low activity level if their activity level is one standard deviation

below that mean value, and they are in a regular activity level

if their activity level is within one standard deviation of that

mean value.

D. Detecting Speech

Objective social signaling measures based on non-linguistic

vocal attributes to determine social context have been de-

veloped within our research group [29]. We take a similar

approach to characterize the interaction between individuals

and determine the percentage of time that an individual is

engaged in a conversation.

The audio signal captured by the badge is sampled at

fs = 8000 Hz, then it is passed through an array of four band-

pass filters and peak detectors to obtain the spectral envelopes

for each frequency band (described in section III-B). These

five values derived from the raw audio signal and the filter

envelopes are averaged over 64 samples (8 milliseconds). The

averaging ensures that one cannot determine the content of

the conversation or identify the speaker from the data. Offline

analysis of the stored data is done to determine time segments

when an individual was in a conversation. The audio is divided

into frames and variation in amplitude calculated for each

frame, where a frame here means 32 milliseconds of audio

with an overlap of 16 milliseconds, corresponding to four and

two samples of the averaged signal, respectively. This variation

in amplitude for each frame can be used to determine whether

the individual was involved in a conversation during the given

frame.

E. E-mail Analysis

E-mail has been frequently used to measure social ties

between individuals [3]. Not only is it easy to measure, but

in the modern workplace employees are interacting with each

other more and more frequently through e-mail. This data is

also easily quantifiable, since we know exactly who sent an e-

mail to whom and when. Because e-mail only captures digital

interactions, it is unclear whether this accurately represents

“real world” interactions. In our analysis we take the approach

of comparing e-mail data with the data collected by the

sociometric badges. In general, large scale unidirectional e-

mails have little value when analyzing one-on-one interaction.

Therefore we only consider reciprocated e-mails when exam-

ining relationships between individuals.

F. Combining Face-to-Face and Electronic Communication

Another question that arises is how to combine social net-

work data from multiple sources. It is still unclear how many

e-mails are equivalent to face-to-face interactions detected over

IR. However, if we normalize the values such that the greatest

number of monthly pairwise (IR detections)/(e-mails) is 1, then

we can posit that this will offer a better solution than simply

adding the two adjacency matrices together. Ideally, we would

use a weighting factor that would discount the e-mail ties by

some multiplicative factor because of the intuition that e-mail

indicates weaker social ties than face-to-face interaction, but

currently we cannot justify choosing a particular factor. In

future work we plan to study this relationship in greater detail.

We must also account for links between actors through e-

mail that are entirely absent in the face-to-face network. If two

people are seen as accessible to each other over Bluetooth and

have no face-to-face interaction but do have e-mail exchanges,

there are two possible explanations. The first is that these

individuals simply don’t know that they are proximate to

each other. This is unlikely, since the range of Bluetooth

is ten meters and individuals that communicate with each

other frequently over e-mail would likely interact if they saw

each other in person. Although IR does not detect all face-

to-face interactions, over the course of a month it would

likely catch one if the individuals occasionally interacted. The

second explanation is that a social tie does not exist between

these two actors, that they are in fact exchanging e-mail as

a matter of their official duties, such as cc-ing all members

of the division. Therefore, when combining information we

remove e-mail ties that fall into this category. We define “total

communication” as the combined information of IR detections

and e-mail exchanged.

G. Relational Data Analysis

Relational data (i.e. IR detections, e-mail exchanged, Blue-

tooth proximity) must be placed it into an adjacency matrix

in order to analyze it under a social network framework. In

relational data there are two participants: a sender i and a

receiver j. We say define the matrix A with elements aij such

that:

aij = max(aij, aji)
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where aij is the amount of communication measured between

i and j. This procedure creates a symmetric matrix and a social

network representation.

We define the “betweenness” of a node n in a social network

as the proportion of all paths between any two nodes in the

network that pass through n [36]. Mathematically, we have:

bn =
∑

n 6=v 6=t ∀v,t∈V

αvt(n)
∑

i 6=v 6=t ∀i∈V αvt(i)
(4)

where αvt(n) is the number of unique paths in the social

network from node v to node t that pass through n and bn is

the betweenness of n.

V. RELATED THEORY AND HYPOTHESES

A. Co-presence vs. Electronic Communication

Co-present communication occurs when there is direct face-

to-face interaction. There are several factors that affect face-

to-face communication. For instance, Zahn [37] studied the

effects of hierarchical relationships and physical arrangements

on face-to-face communication in an office environment. Mu-

tual exposure and physical distance were used as predictors of

communication time.

Electronic communication channels include telephone, fax,

e-mail, instant messaging, and video conferencing among oth-

ers. Previous studies have attempted to extract social network

structures by looking at e-mail only [38]. For instance, Grippa

et al. [5] compared the social networks implied by four

different media: e-mail, face-to-face, chat, and phone in order

to identify to what extent the network implied by e-mail differs

from the network implied by other communication media.

They found that e-mail alone defined 72% of a social net-

work’s density; the total number of edges implied by merging

e-mail and chat explained 85% of the overall network density;

and the complete network’s density was entirely described by

combining e-mail and face-to-face communication.

Thus in common with most research in this area, we

hypothesized that:

Hypothesis 1 (H1) The greater the number of people who

are in close proximity to an individual, the greater volume of

electronic communication the individual will have.

B. Total Communication and Satisfaction

There has been extensive research on the occurrence of

communication overload and its effects [39], [40], [41], [42],

[43], [44], [45]. Individuals who become overloaded with

communication responsibilities have difficulties focusing on

the tasks at hand and coping with their responsibilities [43].

Subsequently, their overall level of satisfaction with their

situation will decrease [39]. If we are able to capture both face-

to-face and electronic communication, then we should be able

to gauge the degree of communication overload experienced

by an individual. This leads us to:

Hypothesis 2 (H2): The greater the amount of total commu-

nication an individual has, the lower level of satisfaction the

individual will have.

Fig. 4. Organizational chart.

C. Social Role and Satisfaction

There has been substantial research on the effect of official

role on job satisfaction. [46], [47], [48]. However, the effects

of the social role of employees has not been thoroughly

studied. Social role is often represented by the centrality of

individual employees in the social network. There are multiple

measures of centrality: in-degree, out-degree, betweenness,

and closeness [49]. However we chose to use betweenness

as our centrality measure because betweenness indicates the

degree to which an individual is playing an “intermediary”

role in the social network. The betweenness of an individual

measures the extent to which they can play the part of a

“broker” or “gatekeeper” with the potential for control over

others [36].

Brass found that people with higher betweenness had lower

level of satisfaction [50]. Brass explains this negative corre-

lation by the strong relationship of job satisfaction and job

characteristics, such as autonomy and variety. Since individu-

als with low centrality tend to be in jobs with high autonomy

and low task interdependencies, they are easily satisfied by

individual compensation structures [51]. Hence we posit:

Hypothesis 3 (H3) The more central an individual is in an

organization, the lower level of satisfaction the individual will

have.

VI. EXPERIMENT

A. Experimental Set-up

We deployed the sociometric badges described in section III

for a period of one month (20 working days) in the marketing

division of a bank in Germany that consisted of 22 employees

distributed into four teams. Each employee was instructed to

wear a badge every day from the moment they arrived at work

until they left their office. In total we collected 2,200 hours of

data (100 hours per employee) and 880 reciprocal e-mails.

The employee pool had exactly the same number of men

as women, but all of the managers were men. The division

contained four functional teams consisting of either three

or four employees. Each of these teams was overseen by a

manager, who was in turn supervised by a mid-level manager.

These mid-level managers were responsible for two teams, and

they reported directly to the division manager. The division’s

organizational chart is shown in figure 4. We treated the mid-

and division-level managers as a single team in the analysis.

The bank division itself also had a very interesting physical

layout. The division was split across two floors, and some
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teams were co-located in a single room while others had

employees from multiple teams in them. There were 6 rooms

in the second floor and 4 rooms in the third room. In fact,

one of the reasons this division took such an interest in

the experiment was to determine precisely what effect this

physical layout had on the interactions that occurred within

the division.

The objective of the experiment was to use data collected

using our wearable electronic badges to correlate temporal

changes in social interaction patterns (including amount of

face-to-face interaction, conversational time, physical proxim-

ity to other people, and physical activity levels) with perfor-

mance of individual actors and groups. We obtained e-mail

logs as well as self-reported individual and group performance

satisfaction data as part of a case study on the impact of

electronic communications on the business performance of

teams [52]. This data gave us a very detailed picture of the

inner operations of the division.

B. Experimental Procedure

The sociometric badges logged IR detections (containing

the transmitting badge’s ID) every time they were facing

other badges, Bluetooth devices’ IDs, motion data from the

accelerometer, and raw and bandpass filtered audio. The IR

transmission rate was set to one ID transmission every two

seconds. Each badge was detectable over Bluetooth every ten

seconds, and each badge performed a Bluetooth scan every

five seconds. The audio was sampled at 8 kHz and averaged

over 64 samples so that the raw speech signal could not be

reconstructed in order to maintain privacy. All data collected

was anonymized and each participant had access only to their

own data upon request.

In addition to the 22 wearable badges, 14 badges were

used as base stations and placed in fixed locations across

two floors of the bank’s building to roughly track the location

of interaction events as well as subjects. Base stations were

continually discoverable over Bluetooth. A central computer

was used for data collection and was placed in the division’s

conference room, where employees could easily retrieve their

badges when they arrived and plug them into a USB hub

before they left for the day. This operation allowed data to

be automatically transferred via the badge’s USB port and

uploaded to a server in our laboratory once a day, while at the

same time recharged the badge’s battery.

At the end of each day employees were asked to respond

to an online survey that included the following questions:

• Q1. What was your level of productivity today?

• Q2. What was your level of job satisfaction today?

• Q3. How much work did you do today?

• Q4. What was the quality of your group interaction

today?

We modeled our questions on those that are frequently

used in the literature [53]. Each question could be answered

according to the following 5-point likert scale: (1 = very high)

(2 = high) (3 = average) (4 = low) (5 = very low). Each person

had to enter their badge number when they answered the

survey. In the following sub-sections we describe the results

of this experiment.

C. Results–Co-presence and Electronic Communication

In this experiment we used e-mail as a representative

proxy for electronic communication since it was the most

frequently used means of communication among employees of

this organization. In future experiments we plan to incorporate

other electronic communication channels in our analysis.

Initially we hypothesized that Bluetooth detections could

be used to recognize office level locations and conversational

groups. However, the large range of the Bluetooth receivers

made this task extremely difficult, limiting the resolution of

our data. This caused us to take a different approach to the

analysis. Since closer devices were detected more often, we

say that two people are in close proximity to each other only

if their Bluetooth IDs were detected for more than 15 minutes

during one hour. This accounts for the limited Bluetooth

detection rate.

Over the course of the experiment, the average number of

different people in close proximity to an individual per hour

was measured using this approach. The range of values for

this measure was 0.125 to 4.12 people per hour. The total

number of e-mail exchanges during the study was in the range

of 15 to 149. We found that the number of people in close

proximity had a high negative correlation with the number of

e-mails exchanges (r = −0.55, p < 0.01, N = 22). This is

contrary to hypothesis H1 and therefore we can conclude that

the greater the number of people who are in close proximity to

an individual, the lower volume of electronic communication

the individual will have. This has powerful implications for

previous work that has used e-mail communication as a proxy

for the social network of an organization, since in the past e-

mail has been used as a proxy for all communication channels

[54].

We can attribute this to several factors. First, if you are in

close proximity to another individual, it makes more sense to

interact with them in the real world rather than send them an e-

mail. Second, proximity information also picks up on informal

relations, while in this particular organization e-mail is used

mainly for business purposes. This result points towards the

necessity of having face-to-face interaction information in

order to have a full view of the social network.

When we grouped people by floor, we observed that people

on the second floor had a lower number of easily reachable

people per day than people on the third floor (µ2nd = 4.08
people, µ3rd = 15.08 people, with p < 0.01, N = 22), and the

average number of e-mails exchanged during the entire month

was higher for people on the second floor (µ2nd = 96.4 e-

mails, µ3rd = 37.7 e-mails), with p < 0.001, N = 22).

However, we were not able to group people by room since

the Bluetooth range was greater than the separation between

rooms. Hence we can posit that people on the third floor are

more stationary, staying in their office most of the time, allow-

ing for predictable face-to-face communication and mitigating

the need for e-mail. On the other hand, people on the second

floor are more mobile, often out of their office, requiring them

to use more asynchronous communication channels such as e-

mail. These results were obtained using a one-way ANOVA.

These results also suggest that while social mobility is
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Fig. 5. Co-presence and electronic communication patterns of people on
different floors. People on the second floor have lower Bluetooth detections

and more e-mail exchanges than people on the third floor. Points denote
individuals; ellipses denote the one-sigma boundaries of each class.

important, it causes an individual to be less available for face-

to-face communication, thus increasing e-mail exchanges. It

would be interesting, however, to examine which way the

causality actually goes. Plotting the individual patterns on a

Bluetooth detection vs. e-mail exchange plane allows us to

see the distinct patterns of the two floors (figure 5). With only

the e-mail count, we would have seen a continuous pattern of

communication in the individuals. However Bluetooth detec-

tion allows us to see another dimension of how people interact

with each other, verifying the limits of using only e-mail as a

measure of social interaction.

D. Results–Total Communication and Satisfaction

When we examined the total communication of each indi-

vidual, we found that it had a very high negative correlation

with the monthly averages of questions Q2 (job satisfaction)

and Q4 (group interaction satisfaction) (r = −0.48 and

r−0.53 respectively, with p < 0.05 and N = 22 in both cases).

This confirms hypothesis H2, namely that as an individual

engages in more and more communication, their satisfaction

level decreases.

It is important to note that this relationship was not found

when examining face-to-face and e-mail data separately; the

data had to be combined. This result stresses the importance

of capturing face-to-face communication, since if only e-mail

data is collected significant measures of social context are lost.

E. Results–Social Role and Satisfaction

Observing the betweenness calculated from the pattern of

total communication, we found that betweenness was highly

negatively correlated with the monthly average of Q4 (group

interaction satisfaction) (r = −0.49, p < 0.05) and therefore

confirms hypothesis H3. This relationship is shared with

total communication and Q4, however betweenness and total

communication were not significantly correlated.

In line with the results of hypothesis H2, this strong

negative correlation was found only in the communication

network of total communication, not in separate observations

of face-to-face and email. Hence we can understand that the

individual’s role in the communication network, including both

co-present and electronic communication, is a strong indicator

or employee’s satisfaction level.

F. Results–Predicting Satisfaction

A multi-linear regression was fit to model question Q4

(group interaction satisfaction) using total communication and

betweenness. We found that this regression had a correlation

coefficient of r = 0.62 with p = 0.01 (explaining about

30% of the variance in group interaction satisfaction), and

coefficients β0 = 3.81, β1 = −0.19, and β2 = −0.17, where

β0 is the intercept coefficient and β1 and β2 are the coefficients

for total communication and betweenness, respectively. Thus,

the combination of these two measures have good explanatory

power, and since their coefficients are nearly the same size

they are both explaining different portions of the data.

VII. APPLICATIONS

A. Communication Flow Visualization

Using e-mail and face-to-face interaction data collected

in the experiment described in section VI we were able to

create a dynamic visualization that shows communication flow

within and between teams. While e-mail data shows little

variation across days, face-to-face communication patterns

change dramatically day by day.

In figures 6(a) to 6(c) the amount of e-mail messages

exchanged across teams is represented by the thickness of

the red arcs below each box, and the amount of face-to-face

interaction is represented by the thickness of the blue arcs

above each box. This provides a useful and intuitive method

of visualizing the total communication within an organization.

This display, along with similar visualizations provided the

evidence that guided the bank described in section VI-A to

reorganize this division.

B. Team Dynamics Analysis

By studying the correlation among behavioral patterns (e.g.

attitude, communication, business processes) and performance

(e.g. productivity, sales, customer satisfaction), we can dis-

cover and quantify effective behavior patterns. Comparison

between and within teams would allow managers and team

members to identify what behavior patterns lead to desirable

results and subsequently replicate those behaviors. Once we

uncover effective behavior patterns, we can try to improve

productivity and individual satisfaction by changing various

factors:
1) Physical environment: Studies have consistently shown

that in office environments where employees can easily access

each other productivity flourishes [55]. But exactly what is

the change effected by removing cubicle walls? If an orga-

nization has specific problems, how can these be combatted

architecturally? Using the sociometric badge sensing platform,

organizations and architects can measure the social effects of

minute changes in the physical environment and allow others’

knowledge to be transferred across organizations. This may

lead to a new understanding of how to design environments.
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(a) Day 1 (b) Day 2 (c) Day 3

Fig. 6. E-mail exchange volume (arcs below each block) and face-to-face communication time (arcs above each block).

2) Information technology environment: Precisely measur-

ing the effects of changes to the information technology

environment has also been a challenge, although researchers

have recently begun tackling this problem [54]. Our sensing

architecture allows managers to perform social science exper-

iments of their own to determine if providing new tools to

parts of the organization is worth the investment. Instead of

looking at largely meaningless individual and group metrics,

managers can see how changes quantitatively effect individual

and group behavior.

3) Organizational communication methods: If an employee

is promoted to lead another group, what is the effect on the

group that they left? If the high performing individual who

was promoted ended up being the connector who held to-

gether group communication, substantial preparation would be

needed to ensure that the team could still function without this

individual. Our sensing platform naturally leads to this type of

analysis. It may also be found that certain teams function better

because of their communication opportunities in the form of

accepted contact channels. This can be automatically extracted

from the data our sensors provide.

4) Individual behavior: Certain individuals are better at in-

teracting with people. While this is a fact of life, it is often the

ethereal nature of such a quality that leads us to believe that we

cannot capture even part of it. But previous research from our

group has shown that we can indeed tease out characteristics of

interaction that lead to favorable (and unfavorable) outcomes

[29]. By communicating this information to the applicable

set of individuals, we can expand the social capital of an

organization tied in communication by an order of magnitude.

C. Sensible Orb

We can encourage movement towards higher performance

and motivation by providing individual activity data for self

reflection. Both real-time and longitudinal information can be

used for this purpose and it is also helpful if individuals can

compare their behavior with skilled or experienced others or

aggregates of the total population.

There is extensive previous work on expressing quantitative

and qualitative data using color spectra. Liu et al. [56] pro-

posed to visualize opinions through color and texture, and in

later work he denoted textual context by using color patterns

[57]. In the commercial world, users can purchase an Ambient

Orb [58] and customize it so that it will retrieve data from the

Web. This includes information such as stock prices, weather,

Fig. 7. Sensible Orb’s color map.

and traffic conditions. The result is displayed using a mapping

to a color spectrum.

The Sensible Orb is another implementation of such in-

tuitive visualization tools. A major objective of the Sensible

Orb is to provide users with multiple channels of processed

data in an informative and manageable way. This gives users

a reflection tool that allows them to make a more educated

decision on how they should act in the future. The first version

that we have implemented indicates a user’s estimated activity

level, cognitive load, and work load by varying the color of the

orb. Activity level, cognitive load, and work load are assigned

to the colors red, green, and blue, respectively. The color

mappings used in the Sensible Orb are shown in figure 7. Each

measurement can be a function of the following parameters

(features currently used for display are in italics):

• Activity level: number of keys typed, movement energy.

• Cognitive load: frequency of changing tasks, number of

interruptions, number of e-mails to read.

• Work load: hours of work, number of e-mails sent.

The transition of the user’s state is represented by the

color pattern of the orb. For example, suppose we map the

temporally recent feature values to the middle of the orb

and aggregated features to the edge of the orb. Then we can

draw the whole orb by interpolating between these two colors.

Figure 8(a) shows a situation where the user is moving towards

less activity, while figure 8(b) shows a situation where the user

is moving towards a balanced flow state. In figure 8(c), we

show a situation where the user’s behavior patterns suggest

that their overall state is changing from appropriate cognitive

load (green) to a condition of heavier work load (blue). The

“ideal” color is pure white, which indicates a “flow state”

balancing work load, stress, and abilities.

Sensor readings from the badge are used to give feedback
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(a) (b) (c)

Fig. 8. User’s state transition. (a) Moving towards less activity. (b) Moving
towards a balanced flow state. (c) Increasing work load.

(a) (b)

Fig. 9. The meeting mediator is an example of a mobile phone-sociometric
badge application. Each square in the corner represents a participant. The
position of the center circle denotes speech participation balance, and the

color of the circle denotes the group interactivity level. Figure 9(a) indicates
a well balanced and highly interactive group meeting whereas figure 9(b)

indicates that participant Y is heavily dominating the conversation with a low
level of turn taking between the participants.

to the user. This tool gives users the ability to reflect on

their actions and improve their behavior through an iterative

learning process.

D. Meeting mediator

We have also used mobile phones to display behavior.

Mobile phones can communicate with the sociometric badge

as well as a server via Bluetooth in real-time.

The meeting mediator is one of the mobile phone applica-

tions that we have implemented. It uses sociometric badges to

help users better understand the flow of a meeting and possibly

improve their behavior. This application can be used in various

forms of meetings such as lectures, brainstorming sessions,

or one-on-one conversations. For example, in a brainstorming

session, the sociometric badge detects the speaking balance

and turn taking pattern of the conversation, and displays this

information as shown in figure 9. Often people do not realize

how much they are talking and can benefit from reminders to

participate more or less in conversations [12], [59].

Initial studies have shown that this application does not

interfere with the group task and yet has significant effects

on meeting dynamics [60].

VIII. CONCLUSIONS AND FUTURE WORK

We have presented the design, implementation, and de-

ployment of a wearable computing platform for measuring

and analyzing human behavior in organizational settings. We

demonstrated the use of wearable electronic sensors capable of

measuring social signals derived from vocal features, body mo-

tion, relative location, proximity, and face-to-face interaction

to capture individual and collective patterns of behavior. We

used sociometric badges in a group of 22 employees in a real

organization for a period of one month. The badges performed

as expected, and users reported not being self-conscious about

wearing them after a few days.

Widespread acceptance of this technology depends on the

ability to guarantee the users’ privacy and give them feedback

about their organization’s dynamics. This technology allows

us to have a very detailed picture of an individual’s social

network and their day-to-day actions. However, there is a need

for proper data management tools that will allow individuals

to share only the data that they are willing to share in an

anonymous way and give them access to aggregated statistics

in real-time.

Using these automatic measurements, we were able to mea-

sure employees’ self-assessment of job satisfaction and their

own perception of group interaction quality by combining data

collected with our wearable badges and e-mail communication

data. We found that the total amount of communication was

predictive of both of these assessments (r = −0.48 and

r = −0.53 respectively, with p < 0.05 in both cases), while

betweenness in the social network exhibited a high negative

correlation with group interaction satisfaction (r = −0.49,

p < 0.05). By combining these two measures (amount of

total communication and betweenness) we were able to explain

about 30% of the variance in group interaction satisfaction.

We found many interesting results involving different com-

munication channels and behavior patterns. An important find-

ing was that physical proximity to other people was strongly

negatively correlated with e-mail communication (r = −0.55,

p < 0.01). This points towards the necessity of having face-

to-face interaction information in order to have a full view

of the social network. These results demonstrate that we

have built a useful platform that can give us information

about how people interact and that a network formed from

a single communication channel does not accurately represent

the complete social network structure. This information would

not be available without the use of a device such as the

sociometric badge. Our results and the ease of deployment

argue strongly for the use of automatic sensing data collection

tools to understand social systems.

We presented a number of applications that use the collected

data to provide feedback to individuals and organizations in

an intuitive and valuable manner. In future work we will

refine our analytic methodology by looking at the temporal

relationships between different features. We will also perform

other experiments to gain a more general understanding of

how organizations work. By automatically quantifying human

behavior using wearable sensors we can find relationships

between sensor data and organizational performance, and thus

identify optimal behavior patterns that would lead to improved

performance. Further theories that explain the causality of such

relationships need to be considered.

The implications of a system that can measure social context

are important in a mobile, geographically dispersed society.

Propagating social context could transform distance learning,
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for example, letting users become better integrated into on-

going projects and discussions, and thus improve social in-

teraction, teamwork, and social networking. Teleconferencing

might become more reflective of actual human contact, since

participants can now quantify the communication’s value.

Our long-term goal is to develop a set of interventions and

recommendations that can lead to better individual and group

performance.
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