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ABSTRACT 
Widespread adoption of interactive, peer-to-peer digital media 
will require a solution to the Privacy, Sharing, and Interest (PSI) 
problem: how can we know what the user wants to share with 
whom, and when, without burdening the user with constant 
updating of lists of approved users and sharing preferences?  We 
argue that real-time analysis of user behavior provides an 
automatic PSI capability, allowing media to be automatically and 
proactively shared with a much lower user burden.   

1. INTRODUCTION 
Perhaps the biggest questions facing the spread of interactive 
digital media are Privacy, Sharing, and Interest (PSI).   Privacy is 
the ability to control access to media to which you have rights.  
Sharing is the ability to specify the group of people with whom 
you would like to share particular media, including the ability to 
make sharing parameters depend upon particular circumstances.  
Interest combines your personal interest given the current 
circumstances with the relevance and priority of the material.   In 
this terminology, privacy mechanisms control the range of 
distribution, sharing mechanisms control your personal 
distribution activity, and interest parameters prioritize media 
within these broader categories.   

Today the main mechanism for specifying these PSI parameters is 
through specification of set membership, typically through 
security approvals, `buddy lists' and the like.  The trouble with set 
specification mechanisms is that they are difficult to make 
sufficiently nuanced, because PSI depends not only on physical 
context, social context, and temporal context, but also on personal 
variables such as friendship, attraction, and social dominance.  
Moreover, as we add more variables to the set specification it 
becomes increasingly burdensome to keep the set membership up-
to-date.  These difficulties have restricted media sharing to 
ambitious lead users who are willing to devote a great deal of 
energy to organizing their media communications, and left the 
rest of us relying on a limited number of simple default sharing 
patterns. 

What is required is some sort of automatic `mind reading’ 
capability to continually assess the users' context, social 
relationships, and attitude toward the relationship given the 
context, and then dynamically and continuously update the users' 
privacy, sharing, and interest parameters.  Fortunately, by taking a 
human-centered, data mining approach applied to the users' 
behavior and physical situation, we have been able to show that it 
is possible to obtain solid, dynamic estimates of the users' group 
membership and the character of their social relationships.  This 
approach to PSI “reads the users' minds” by analyzing their 

behavior in different contexts, and using the resulting data to infer 
the likely PSI parameters. 

The key to automatic inference of PSI parameters is the 
recognition that humans are not general-purpose equipotent 
reasoning agents, but rather are creatures with a long evolutionary 
history that continues to shape our behavior and interactions with 
others.  This shaping of behavior is particularly visible in social 
relationships and our attitudes toward them: we act differently 
when interacting with friends vs strangers, those we work for vs 
those who work for us, when we are interested vs when we are 
bored.  By characterizing these patterns of behavior using 
statistical learning methods, we can then examine the users' 
current behavior to classify relationships as workgroup, friend, 
interesting, and so forth. 

Automatic PSI will never be perfect, because people do not 
behave with perfect regularity. However it already seems to be 
good enough to set defaults, scan for likely sharing errors and 
similar mistakes, and validate data from forms or more traditional 
sources.  We can also vary the confidence thresholds of the 
system, making the system more or less cautious about particular 
types of mistakes.  In addition, the models provided by automatic 
PSI can suggest when user input would be most useful, resulting 
in a semi-supervised PSI capability that can have very high 
accuracy and a relatively low user burden. 

In fact, given the errors people make in manually setting PSI 
parameters, our automatic PSI methods may already be as good or 
better than traditional methods, but with very much reduced user 
effort.  Since reduced user effort correlates strongly with 
increased use, achieving `commonly accepted' PSI parameter 
estimation accuracies but with lower user burden offers the 
possibility of dramatically expanding the use of interactive digital 
media. 

1.1 A Example of PSI at work 
Sports events are prime examples of contexts where people want 
to share their self-created digital media.  Fans at a soccer match 
may record videos of their friends, fragments of a game, and 
spectacles around the stadium.   

Currently, people have two options for distributing the media they 
generate.  They can either push the media to their friends through 
their mobile device, or they can upload their data to a media-
sharing site like YouTube or Google Video.  Neither of these 
cases takes advantage of the ability of mobile devices to guide 
distribution through the inference of PSI parameters for the 
created media. 



Location tracking gives natural bounds to the temporal extent of a 
soccer event.  A mobile device can segment the time spent at the 
stadium from the travel that occurs before and after the event.  
Media recorded during the soccer match can then be associated 
with the enclosing context. 

An understanding of the social context of the user yields a set of 
potential peers for sharing and media distribution.  The fans that 
the media producer spends the most time with at the game are the 
most natural candidates to receive the produced media clips. 

Fans will have different preferences for the media produced at the 
soccer match. Mobile devices can weight available media content 
by the interest that they sensed at the time the media was created.  
When a goal is scored, for example, the excited behavior of the 
scoring team’s fans would result in a higher positive interest 
measurement for the period around the goal.  Far fewer – but 
more specific – people would display high interest levels for a 
group photo taken in the parking lot after the game. 

1.2 Related Work 
Many projects have addressed components of the PSI problem.  
One area that has been widely studied is sensing human context 
with mobile and wearable devices.   

The Active Badge project is one of the earliest examples of a 
location-aware system that employed infrared (IR) beacons to 
locate and route phone calls to users [1].  Today’s mobile devices 
have the ability to locate users by cell tower ID, GPS, and 
scanning fixed beacons such as Bluetooth devices.  Projects from 
both academia and industry are using spatial context to enable 
location-based services. 

By performing repeated scans, mobile devices can measure 
changing social context of their users.  Projects have used both 
specialized hardware [2,3,4] and off-the-shelf smart phones 
[5,6,7] to scan with both IR and radio frequency (RF), e.g. 
Bluetooth.   These social context aware systems are largely 
intended to support face-to-face collaboration by revealing the 
user’s social context and promoting interaction.  Proximity scans 
have also been used to generate social metadata for images that 
enables sharing between dyads of proximal people on a per image 
basis [8].   
Our research group has also conducted experiments in speed 
dating, pitching business plans, and conference behavior that have 
identified behavioral features useful for the prediction of human 
interest [9,10].  Using methods similar to ours, Gatica-Perez et al 
2005 [11] found that HMMs built from relatively simple audio 
and visual features could predict average group interest level 
ratings for discussion groups. 

2. Developing PSI 
To develop PSI, we need to learn the relationship between user 
behavior and the PSI parameters.   Towards this end we have 
conducted several large experiments where we tracked user 
behavior, and then compared features of that behavior to PSI 
parameters.    We were particularly concerned with our ability to 
automatically infer:  

• Location Context: work, home, etc. 
• Social Context: with friends, co-workers, boss, family, 

etc. 

• Social Interaction: are you displaying interest, boredom, 
friendliness, determination, etc. 

Obviously some of these categories can be inferred using standard 
methods such as user input or public digital databases, however 
these standard methods are often too abstract to be useful or are 
prone to becoming out-of-date.  For instance, your company’s 
organization chart probably does not correspond to the day-to-day 
reality, and the central office of a construction company is not 
where its employees typically work.   In such cases we would like 
to use automatic PSI to validate or even correct the standard 
information sources. 
The first experiment we will discuss used programmable `smart 
phones’ to track the behavior of graduate students within two 
divisions of MIT, the business school and the Media Laboratory 
[7].  The phones programmed to keep track of their owners’ 
locations and their proximity to other people, by sensing cell 
tower and Bluetooth IDs.  This provided approximately 350,000 
hours of data covering the behavior of 81 people for a period of 
nine months.  The subjects were typically between 23 and 39 
years of age, with the business school students almost a decade 
older than the Media Lab students.  Subject groups were typically 
2/3 male and 1/3 female, and approximately half were raised in 
America. 
The second experiment used electronic badges that record the 
wearers’ locations (with 2 meters typical accuracy), ambient 
audio, and upper body movement via a 2-D accelerometer [10].  
This badge platform provides more fine-grained data than the 
smart phone, but the batteries only last for one day.  We have 
used this platform to obtain data from the more than 110 adults 
that regularly attend the biannual Media Lab sponsor meetings, in 
which attendees walk around the Media Lab building to examine 
demonstrations and converse with each other during a four-hour 
period.  The attendees have been approximately 1/3 from Asia, 
1/2 from North America, and 1/6 from Europe.   
Both smart phones and badges can also be used to measure voice 
and body motion `signals’ from individuals.  Such signals include 
the relative timing of vocalizations and the amount of modulation 
(in both pitch and amplitude) of those vocalizations, and similarly 
the relative timing of body motion and the amount of energy in 
the body motion.  These signals have been show to correlate with 
the individuals’ attitudes toward social interaction (e.g., interest, 
friendliness, etc), and can be used to predict user behavior during 
semi-structured interactions such as speed dating, focus group 
interviews, or negotiations [12,13]. 

2.1 Reality Mining 
Together these two sensor platforms allow us to observe gross 
behavior (location, proximity) continuously over months, to more 
accurately observe behavior (location, proximity, body motion) 
over one-day periods, and to analyze vocalization statistics with 
an accuracy of tenths of seconds. These behavioral data are then 
subject to four main types of analysis: characterization of 
individual and group distribution and variability (typically using 
an Eigenvector or principal components analysis), conditional 
probability relationships between individual behaviors (known as 
`influence modeling’), accuracy with which behavior can be 
predicted (with equal type I and II error rates), and finally the 
relationship of these behavioral measures to standard PSI 
parameters. 



2.1.1 Learning Eigenbehaviors 
A critical requirement for PSI is to learn and later categorize user 
behavior as quickly as possible.  Eigenvector analysis, commonly 
known as principal components analysis, is the optimal linear 
method for obtaining a low-dimensional approximation to a signal 
such as observations of user behavior.  Eigenbehaviors thus 
provides us with an efficient method of learning and classifying 
user behavior [14].  
Calculation of Eigenbehaviors begins by measuring person I’s 
behavior (for instance, the time sequence of their location).  This 
is illustrated in Figure 1 as  (x,y), a two-dimensional D by 24 
array of location information, where D is the total number of days 
person I has been in the study.  Because of the structure in most 
people's lives,   can be described by a relatively low 
dimensional `behavior space’, which is spanned by their 
Eigenbehaviors.  
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Figure 1.  A sample of a person’s location in a time sequence. 
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These Eigenbehaviors can be ranked by the total amount of 
variance in the data for which they account, essentially those with 
the largest associated Eigenvalues. 

2.1.2 PSI using Eigenbehaviors 
As might be expected, the main daily pattern is that of subjects 
leaving their sleeping place to spend time in a small set of 

locations during the central daylight hours, then occasionally 
breaking into small clusters to move to one of a few other 
buildings during the early night hours and weekends, and then 
back their sleeping place.  Over 85% of the variance in the 
behavior of low entropy subjects can be accounted for by the 
mean vector alone. 
For typical individuals the top three Eigenbehavior components 
account for up to 96% of the variance in their behavior.   These 
three components could be thought of as the weekend pattern, the 
working late pattern, and the socializing pattern. Even though we 
are considering mostly young people without a regular job or 
family, it seems that there is very limited variability in human 
behavior.  This means that one can, for instance, observe a 
person’s behavior in the morning, and from these observations 
accurately predict their behavior for the rest of the day [14]. 
The ability to accurately characterize peoples’ behavior with a 
low-dimensional model means that we can automatically classify 
the users’ location context with high accuracy.  If we also allow 
the system to request that the user label locations that the system 
thinks are novel or are unusually sequenced, then we can achieve 
very high accuracies with very limited user input. 

2.2 Influence Modeling 
The previous data illustrate the stereotypical patterns and limited 
variability we observe in individual subjects. Next let us ask what 
behavioral structure we observe between subjects.  We thus move 
from a static analysis of behavior to a dynamic analysis. 
Conditional probability relationships between subjects, which we 
refer to as influence, allow us to predict the behavior of a subject 
from the other subjects’ data [15,16].  For instance, if Joe shows 
up at a meeting whenever Fred does, then observing Fred’s 
attendance allows accurate prediction of Joe’s impending 
proximity.  In our cell phone proximity data there were two main 
sub-networks of influence relations, one during the day and the 
other in the evening, both with similar network prediction 
accuracy.  Overall, influence between subjects allowed 95% of 
the variance in personal proximity data to be accounted for by the 
surrounding network of proximity data [16]. 

2.2.1 Learning Influence 
Again, a critical requirement for PSI is the ability to learn and 
later categorize user behavior from relatively few observations.  
The requirement for a minimal parameterization motivated our 
earlier development of Coupled Hidden Markov Models 
(CHMMs) to describe interactions between two people, where the 
interaction parameters are limited to the inner products of the 
individual Markov chains.  The “influence model,” is a 
generalization of this approach, and describes the connections 
between many Markov chains as a network of convex 
combinations of the chains.  This allows a simple 
parameterization in terms of the “influence” each chain has on the 
others [15,16]. 
The influence model has the unique advantage that its steady-state 
behavior has the same first-order Eigenstructure as the cross-
product of all the constituent Markov chains, despite having 
logarithmically fewer states. As with the Eigenbehavior 
representation, the influence representation makes it possible to 
analyze global behavior while avoiding the exponential number of 
states typical when using other models of interacting individuals 
or agents. 



The graphical model for the influence model is identical to that of 
the generalized N-chain coupled HMM, but there is one very 
important simplification.  Instead of keeping the entire 
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In other words, we form our probability for the next state by 
taking a convex combination of the pair wise conditional 
probabilities for our next state given our previous state and the 
neighbors’ previous state.  As a result, we only have N QxQ tables 
and N α  parameters per chain, resulting in a total of NQ2 + N2 
transition parameters.  It is important to realize the ramifications 
of these factors being constant:  intuitively, it means that how 
much we are influenced by a neighbor is constant, but how we are 
influenced by it depends on its state. 

2.2.2 PSI using Influence 
When we use the influence model to analyze the proximity data 
from our cell phone experiment, we find that clusters of influence 
in the proximity data map cleanly to our notion of affiliation and 
friendship. Clustering the daytime influence relationships allowed 
96% accuracy at identifying workgroup affiliation, and clustering 
the evening influence relationships produced 92% accuracy at 
identifying self-reported ‘close’ friendships  [7]. 
Similar findings were obtained using the badge platform.  During 
a meeting of over 110 Media Lab sponsors, the combination of 
influence and proximity predicted whether or not two people were 
affiliated with the same company with 93% accuracy [10]. 
The ability to accurately characterize peoples’ social relationships 
by modeling their interpersonal influence (conditional probability 
structure) means that we can automatically classify the users’ 
social networks with high accuracy.  If we also allow the system 
to request that the user label relationships that the system thinks 
are new, are unusual, or where the relationship characterization is 
uncertain, then we can achieve very high accuracies with very 
limited user input.  Moreover, this automatic labeling of 
relationships works even for dynamically changing social 
networks; its accuracy is largely a function of the amount of 
observation data available.  Thus, for instance, we could 
accurately label users’ company membership from only a few 
hours of meeting data. 

2.3 Social Signals 
The importance of social displays has been highlighted by the 
research of Ambady and Rosenthal [17] and its practical 
ramifications explored in the popular book `Blink’ by Malcom 
Gladwell [18].  In brief, they have shown that people are able to 
`size up’ other people from a very short (e.g., one minute) period 
of observation, even when linguistic information is excluded from 
observation, and that people use these `thin slice’ 
characterizations of others to quite accurately judge prospects for 
friendship, work relationship, negotiation, marital prospects, etc.  
There is something about how we behave that accurately signals 
the likely future course of our social interactions. 
We have been able to distinguish several types of `social 
displays’, defined as short-term (30 second) display-like behavior 
patterns that reliably precede important functional activities such 

as exchanging personal identifiers [12,13].  We can name four of 
the more common displays as `excitement,’ `freeze,’ 
`determined,’ and `friendly,’ to pick terms similar to those used 
the animal literature, however these `displays’ are really only 
distinguished clusters in behavior data, defined with no direct 
reference to the semantics these names might suggest. 
The `excitement’ display is characterized by a large amount of 
rapid, highly modulated speech and body movement.  The 
`freeze’ display is characterized by unusually little vocalization 
and body movement.  The `determined’ display is characterized 
by rapid responses to other vocalizations and highly modulated 
speech and body movement.   The `friendly’ display is 
characterized by mirroring behavior, above-average listening 
time, and well-modulated speech and body movement.  For 
technical details see [12,13]; code, data, and additional 
publications are available at http://hd.media.mit.edu 
In our sponsor meeting data, with more than 110 subjects at each 
meeting, we observe that the `excitement’ display predicted 
trading of business contact information with 80% accuracy (equal 
error rate).   The `freeze’ display, when performed in front of a 
demonstration, predicted requests for additional information with 
80% accuracy (the `freeze display’ seems to signal mental 
concentration on the presentation).   In a speed dating event, the 
woman’s display of `excitement’ predicted trading of phone 
numbers with 72% accuracy.  And finally, in a salary negotiation 
(conducted for grade in a business school negotiation class), the 
proportion of `determination’ and `friendliness’ displays allowed 
prediction of who would come out ahead with almost 90% 
accuracy. 
Figure 2 shows data from a call center, where social signals were 
measured for 70 calls and compared to the call center ratings of 
whether or not the calls were successful. The vertical axis is 
frequency of data points, and the horizontal axis is our prediction 
based on social signals, with greater values meaning the call is 
more likely to be successful.  A binary decision boundary at 0.45 
produces an equal-error accuracy of 87%. 

 
Figure 2.  Frequency distribution of successful and 

unsuccessful calls vs social signaling in a call service center.  
The cross-validated binary linear decision rule has 87% 

accuracy. 
Other experiments have used these social signals to predict 
outcomes in call centers, job hiring, depression screening, and 
social networking situations.  In each case similar prediction 
accuracies have been achieved by measurement of social 
signaling.  It is especially important to note that these are not 
classifications of emotion; we know nothing about the subjects’ 



emotions in these situation.  These are classifications of decision 
making behavior, as predicted by automatic measurement of the 
subjects’ social behavior prior to making the decision. 
The ability to accurately characterize peoples’ social interactions 
by classifying their signaling behavior means that we can 
automatically classify these interactions with high accuracy.  If 
we also allow the system to request that the user label interactions 
that the system thinks are new, are unusual, or where the 
interaction characterization is uncertain, then we can achieve very 
high accuracies with very limited user input [19]. 

3. PSI for Interactive Digital Media 
These data make the point that human behavior is much more 
predictable than is generally thought, and is especially predictable 
from the behavior of others.  This suggests that humans are best 
thought of social intelligences rather than independent actors, 
with individuals best likened to a musician in a jazz quartet. We 
can predict the behavior of these individuals from that of their 
associates because they are so attentive and automatically reactive 
to the surrounding group that they almost cease to be an 
individual at all. 
These data also make it clear that the conditions under which we 
trade contact information, request information, join groups and so 
forth, can be quite well predicted by location, proximity, and 
signaling behavior.  As a consequence we can `reality mine’ 
behavior using statistical learning tools such as Eigenvector 
analysis and influence modeling, in order to infer social 
relationships without needing to understand the detailed linguistic 
or cognitive structures surrounding social interactions.    

Automatic PSI can `read users’ minds’ by analyzing their 
behavior in different contexts, and using the resulting data to 
control the sharing of media.  This makes it possible to preserve 
privacy, share media, and measure interest without unduly 
burdening the user. 
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