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Abstract

In recent years much work has been done on human
activity recognition using wearable sensors. As we begin
to deploy hundreds and even thousands of wearable sen-
sors on regular workers, hospital patients, and army sol-
diers, the question shifts more toward a balance between
what information can be gained and their broad immedi-
ate user acceptance. In this paper we compare the activ-
ity classification accuracy of four different configurations
of accelerometer placement on the human body using hid-
den Markov models (HMMs). We find the classification ac-
curacy of a single accelerometer placed in three different
parts of the body and evaluate whether there is a signifi-
cant improvement in recognition accuracy by adding multi-
ple accelerometers or not. We also find the number of hid-
den states that best models each activity by achieving the
lowest test error using K-fold cross-validation.

1 Introduction

Being able to automatically recognize human motion
patterns using unobtrusivewearable sensors can be useful in
monitoring the elderly in their homes and keep track of their
daily activities and behavioral changes. This could lead to
a better understanding of numerous medical conditions and
treatments. Other applications of human activity recogni-
tion range from context aware computing to physical train-
ing, physical rehabilitation, and military applications such
as intelligent outfit design for soldiers.

In this paper we study different configurations of ac-
celerometer placement to classify human activities that are
frequent in at least one of these application areas. Eight dif-
ferent activities were modeled using HMMs and continuous
Gaussian observation vectors. Three wireless accelerome-
ters (MITes: MIT Environmental Sensors) [6] were placed

on different parts of the body: right wrist (A1), left hip (A2),
and chest (A3). We selected these locations on the basis
of lengthy discussions with three potential user groups (of-
fice workers, hospital patients, and army soldiers) concern-
ing their general acceptance of wearable sensors. We found
that there was broad consensus about the acceptability of the
chest and hip locations, and so we are developing a wear-
able electronic badge that will be worn on the chest. This
badge will be able to share information with a Bluetooth-
enabled cellular phone that could be worn on the hip and
might have a second accelerometer.

2 Related Work

Previous work in human activity recognition using ac-
celerometers has shown that it is possible to classify several
postures and activities in real time. In [3], the authors de-
veloped a two-layer model that combined a Gaussian mix-
ture model with first-order Markov models to classify a
range of activities including: sitting, walking, biking, and
riding the subway. A single 3-axis accelerometer placed
on the torso was used. In [4], the authors combined data
from three accelerometers and two microphones placed on
different body locations to classify activities performed in
a wood shop with 84.4% accuracy. They modeled most of
the activities using single Gaussian hidden Markov models.
The number of hidden states to model each activity was se-
lected through visual inspection. In [1], several algorithms
to classify twenty different physical activities from data ac-
quired using five 2-axis accelerometers were evaluated with
an overall recognition rate of 84%.

In [5], the authors used decision trees to classify six
different activities with a single accelerometer, placed on
six different body positions commonly used for wearing
electronic devices, with accuracies ranging from 16.7% to
92.8% depending on the position of the accelerometer and
the features used.
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3 Data Collection and Processing

Three different subjects were asked to perform the fol-
lowing sequence of activities: 1) Sit down, 2) Run, 3) Squat,
4) Walk, 5) Stand, 6) Crawl, 7) Lay down (on the chest),
and 8) Hand movements (while standing). The data col-
lection process was repeated three times for each subject.
90 seconds of data were collected for each activity and la-
beled according to the start and stop times of each activity
performed. The data were divided into nine datasets, each
of them containing 80 observation sequences of one-second
duration. An HMM was trained for each activity using eight
datasets (640 observations) and tested on the ninth dataset
(80 observations). This process was repeated nine times,
each time using different training and test sets to obtain the
K-fold cross-validation classification accuracy.

We resampled each dataset atf ′
s = 50 Hz. The mean

and variance of the acceleration in thex, y, andz axes from
each of the three accelerometers were calculated over 200-
millisecond time slices.

4 Activity Classification Using HMMs

Given a training set of labeled observation sequences
(features extracted from the acceleration readings in thex,
y, andz axes from three accelerometers placed on different
parts of the body), corresponding to each of the activities
that we want to classify, we first want to estimate the model
parametersλ = (A,B, π), whereA = {aij} is the the
state transition probability distribution,B = {bj(k)} is the
observation symbol probability distribution in statej, and
π = {πi} is the initial state distribution for each activity.
Given a new set of observations we would like to classify
each sequence according to the model that gives the maxi-
mum likelihood for that particular sequence.

We modeled each observation sequence as a 5-state left-
to-right HMM with continuous Gaussian observation vec-
tors and two hidden states. Each observation vector was
formed by combining the mean and variance in thex, y,
andz axes from each accelerometer. These features were
previously used in [2]. An HMM was trained for each
class(λ1, λ2, ..., λC), whereλc indicates the learned HMM
model for classc, andC = 8 is the total number of classes,
using the labeled data from eight datasets as training dataset
Tk. The ninth data set was used as the validation datasetVk.

The HMM toolbox for Matlab developed by [7] was
used to train and test the different models. The log-
likelihood of each model was calculated for each obser-
vation sequence in the ninth dataset. Each observation se-
quenceOl = {Ol

1O
l
2...O

l
T} (with T = 5 time slices) in the

validation datasetVk = {Ol}L
l=1 was classified according

to the model that gave the maximum likelihood.

The final classification was obtained as

Ĝ(Ol) = arg max
c

L(λc). (1)

The classifierĜ takes values in the class setG =
{1, 2, ...C}.

This process was repeatedK = 9 times using k-fold
cross-validation. The average cross-validation classification
accuracy per class is compared for the four possible config-
urations of accelerometer placement shown in table 1.

Configuration
C1 C2 C3 C4

Right wrist YES YES YES
Left hip YES YES YES
Chest YES YES YES

Table 1. Accelerometer configurations

5 Results

Figure 1 shows a comparison of classification accuracy
when a single accelerometer was used for activity classifi-
cation. We are able to discern activities such as walking
(65.68%) and performing hand movements (56.30%) using
only accelerometer A1 (right wrist). Accelerometer A2 (left
hip) played the most important role when classifying ac-
tivities such as sitting(66.05%), running (97.78%), crawl-
ing (69.26%), and lying down (87.04%). Accelerometer A3
(chest) was best for classifying activities such as squatting
(75.8%) and standing (77.78%).
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Figure 1. K-fold cross validation accuracy
comparison using a single accelerometer.

Figure 2 shows the average classification accuracy per
activity when combinations of two and three accelerometers
were placed in the four different configurations described in
table 1. Table 2 shows a comparison between the classifi-
cation accuracy obtained when a single accelerometer (A1
to A3) was used, and the classification accuracy obtained
when multiple accelerometers were used (C1 to C4).
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Figure 2. K-fold cross validation accuracy
comparison for the four different configura-
tions of accelerometer placement.

Class A1 A2 A3 C1 C2 C3 C4

1 58.40% 66.05% 63.21% 88.52% 94.44% 95.56% 97.78%

2 80.86% 97.78% 96.54% 98.89% 95.43% 100.0% 98.89%

3 23.46% 42.72% 75.80% 72.10% 67.90% 92.72% 82.72%

4 65.68% 41.73% 54.44% 84.32% 77.28% 61.11% 84.20%

5 69.75% 68.77% 77.78% 90.00% 94.44% 97.65% 95.56%

6 45.93% 69.26% 57.65% 84.20% 69.26% 73.58% 91.98%

7 43.21% 87.04% 41.98% 81.11% 76.42% 86.05% 87.16%

8 56.30% 53.51% 32.22% 98.77% 79.85% 55.28% 98.77%

Global 55.45% 65.86% 62.45% 87.24% 81.88% 82.74% 92.13%

Table 2. Classification accuracy comparison

Our results show that it is possible to to recognize some
of the most common activities using a single accelerome-
ter on the chest (with 62.45% average accuracy). Adding
a second accelerometer on the hip or the wrist improved
our classification accuracy by approximately 20%. Adding
a third accelerometer improved the global classification ac-
curacy by an additional 10%.

The results presented so far were obtained by modeling
each activity with an HMM having two hidden states. How-
ever, we think that classification results could be improved
by modeling each activity with a different number of hid-
den states. In some cases, two hidden states might not be
enough for capturing the different stages of a particular ac-
tivity, especially when the activity involves different move-
ments and body positions. Previous studies have not taken
this into consideration and have modeled all activities using
the same number of hidden states.

Table 3 shows the K-fold cross-validation accuracy when
modeling each activity with two-hidden-state HMMs and
when using the number of hidden states,Qmin, that gives
the minimum test error for configuration C4 of accelerome-
ter placement. Based on these results, we select the number
of hidden states,Qopt, that best models each of the activities
studied in this paper.

Class Q = 2 Qmin Var Qopt

1 97.78% 93.33% -4.45% 2
2 98.89% 98.89% 0% 2
3 82.72% 82.72% 0% 2
4 84.20% 88.64% +4.44% 4
5 95.56% 96.67% +1.11% 4
6 91.98% 86.29% -5.69% 2
7 87.16% 87.26% +0.1% 4
8 98.77% 99.01% +0.24% 5

Table 3. Classification accuracy variation and
optimal number of hidden states.

6 Conclusions

We found that the best global classification performance
was achieved when using configuration C4 (92.13%), al-
though it might be possible to obtain similar results using
only two accelerometers. We showed that the global clas-
sification accuracy that can be achieved using a single ac-
celerometer is around 60%, and determined the activities
that are best classified with each accelerometer placed on
three different parts of the body. Modeling each activity
with a different number of hidden states improved the re-
sults. We are convinced that a minimum system formed by
a wearable badge and a cellular phone can achieve fairly
good results in daily activity recognition (80%).
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