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Abstract 

 

In this thesis I develop and evaluate computational methods for extracting life’s patterns from wearable 
sensor data. Life patterns are the reoccurring events in daily behavior, such as those induced by the regular 
cycle of night and day, weekdays and weekends, work and play, eating and sleeping. My hypothesis is that 
since a “raw, low-level” wearable sensor stream is intimately connected to the individual’s life, it provides 
the means to directly match similar events, statistically model habitual behavior and highlight hidden 
structures in a corpus of recorded memories.  
I approach the problem of computationally modeling daily human experience as a task of statistical data 
mining similar to the earlier efforts of speech researchers searching for the building block that were 
believed to make up speech. First we find the atomic immutable events that mark the succession of our 
daily activities. These are like the “phonemes” of our lives, but don’t necessarily take on their finite and 
discrete nature. Since our activities and behaviors operate at multiple time-scales from seconds to weeks, 
we look at how these events combine into sequences, and then sequences of sequences, and so on. These 
are the words, sentences and grammars of an individual’s daily experience. 
 
I have collected 100 days of wearable sensor data from an individual’s life. I show through quantitative 
experiments that clustering, classification, and prediction is feasible on a data set of this nature. I give 
methods and results for determining the similarity between memories recorded at different moments in 
time, which allow me to associate almost every moment of an individual’s life to another similar moment. I 
present models that accurately and automatically classify the sensor data into location and activity. Finally, 
I show how to use the redundancies in an individual’s life to predict his actions from his past behavior. 
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Chapter 1: Introduction 

Our memories are the unreliable denizens of our brains. From the habits we form over 

time to the vignettes that compose our dreams, memories are a sort of compression of our 

physical experiences. An elderly man with a century of experiences has nothing but his 

memory to prove to himself that he has lived a full life, unless he has strewn the signs of 

his life outside of his mind through family, friends, a house, picture albums, scents, 

diaries, and accomplishments. Thus everyone has an instinctive urge to capture 

experiences and preserve them before they fade away. 

 

Imagine a device that can preserve our memories as we experience them and in the way 

we experience them. In order to be useful, the device must come with an environment to 

facilitate the remembering or browsing of stored experiences. A person’s day-to-day 

activities are cyclical at some time-scales and follow slowly changing trends at other 

scales. The device’s owner might have habits that structure a large part of his activities. 

This behavior should be readily portrayed and taken advantage of by the device, raising 

the basic question of how to provide a summarization to the casual browser. While this 

question has historically proven to be quite difficult in the fields of video and text 

summarization, we will argue that the very extended, intimate, and highly structured 

nature of the data that a prosthetic memory device is uniquely exposed to, makes it 

feasible to build statistical models of what events are commonplace and what events are 

rare. 

 

The technology is available now to approximately capture and store the visual and 

auditory experiences of a person over a period of years and soon a lifetime. Since 

computational devices are gradually finding their way into more and more aspects of our 

daily lives, having these devices recognize and understand the events in our life is 

becoming important. A quick brainstorm will yield numerous uses for data of this type, 
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from video diaries [13] to truly context-aware personal agents [45, 29]. However, just 

recording this data is not enough. It’s not even enough for the simple task of re-

experiencing or browsing one’s stored experiences because of the sheer amount and 

variety of data involved. For these kinds of applications we at least need to be able to 

automatically search through the experiential data. For example, the user of an automatic 

diary while browsing the data in a linear fashion comes across a kind of scene that he 

wishes to see more of. In this case it is necessary to be able to associate similar scenes to 

each other. Descriptive and predictive capabilities are necessary for agent-based 

applications that take actions based on the user’s behavior. Knowing the habits of users 

and the difference between typical and atypical behavior are basic requirements for 

agents that work smoothly with humans. However, again, prediction is impossible unless 

we have a notion of the similarity between the scenes we are attempting to predict 

amongst because otherwise every event looks new and unique. 

 

Birth Death

> 100 yrs.

100 yrs.

10 yrs.

10 days

10 mins.

10 secs.

< 1 sec.

falling down the stairs

walking down hallways

eating a meal

commuting to work
shopping for groceries

vacationing

going to school
developing depression

phases of child development

long-term medical conditions

?

marriage

opening a door

now
 

Figure 1-1: The different time-scales of life. 

 

Quantitative analysis of someone’s life can take place at many different time-scales. At 

each time-scale we expect to be able see some classes of phenomenon and not others (see 
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Figure 1-1). Strapping sensors on an individual and processing at the 1 second time-scale 

will enable us to detect when someone is falling down the stairs. However, we will need 

to lift our view of the data to at least a daily scale if we want to predict when someone is 

going to fall down the stairs. In computational perception to date there has only been 

work on narrow, short time-scale domains. Long-term studies on individuals have been 

limited to the works of chronobiologists (researchers of long-term human physiology), 

psychologists, and clinical scientists. We now have the computational tools (storage 

space and computational power) to start considering modeling an individual’s life at 

longer and longer time scales.  

 

The main hypothesis of this thesis proposal is that consistent, repeatable structure exists 

in long-term wearable sensor data. We believe this because the sensor data comes from 

the patterns in an individual’s life. The fact that we have common sense concepts like 

“daily routine” and “a typical day” are hints that a certain part of our life is repetitive or 

routine and hence an ideal candidate for statistical modeling. Philip Agre notes in his 

Ph.D. dissertation in the field of symbolic A.I., The Dynamics of Everyday Life:  

“Everyday life is almost wholly routine, an intricate dance between 

someone who is trying to get something done and a fundamentally benign 

world that is continually shaped by the bustle of human activity.” [1] 

 Machine learning methods rely on repeatable patterns in the data in order to make 

statistical estimates in the presence of noise. While this structure, or life pattern, will 

naturally have many manifestations, we approach the extraction of life patterns from two 

directions.  

 

This work tackles the question of how to recognize and predict a person’s day-to-day 

behavior from visual, auditory, and motion sensor data. Perhaps the hints that cognitive 

scientists are extracting about how we organize our own wet memories could provide 

clues on how to do organize our machine memories. Using ideas from episodic memory 

organization and insect-level perception, we provide an automatic framework for 

organizing sensor data that is intimately connected with an individual’s daily activity. 

While this framework is designed and built with the application of a memory prosthesis 
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(e.g. automatic diary) in mind, there is a direct application to context-aware agents and 

the frame problem in cognition.  

 

Our first approach is to establish a similarity metric or method for assessing the similarity 

of pairs of time intervals in experiential sensor data. This similarity metric can then be 

used to group and align similar events together, structure the experiential sensor data into 

scene hierarchies, and classify situations. Our second approach is to statistically estimate 

the temporal models or statistical rules that describe the typical evolution of events in the 

experiential sensor data. These temporal models are a succinct description of the person’s 

typical life pattern and can theoretically be used to identify anomalies or deviations from 

the norm that might signify novel events in the person’s life. Since temporal models 

capture the habitual dynamics of the individual’s life, they are also useful for prediction 

and summary. 

 

This document is laid out in a simple and causal fashion. In chapter 2, we situate this 

work amongst the current efforts of researchers in artificial intelligence, human-computer 

interaction and computational perception. In this context we motivate the goals of this 

thesis. In chapter 3, we summarize our earlier experiments on smaller data sets that 

highlight the basic methods in principles explored later on. In chapter 4 we describe the 

conditions under which we collected 100 days of experiential data from wearable sensors. 

Chapter 5 is the meat-and-potatoes section upon which the rest of the work lies. Here we 

detail the basic machinery that allows us to draw comparisons between and align 

exemplars of experience. Chapter 6 exhibits our ability to classify the exemplars into 

situations, then in chapter 7 we show how to extract the grammar of experience and use it 

to predict future situations or detect unusual ones. 
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Chapter 2: Background & Motivation 

Vannevar Bush has had his hand in many lines of academic thought, and ours is no 

exception. Even in 1945, he was imagining a wearable camera for the purposes of making 

the serendipitous record: 

 

“A record if it is to be useful to science, must be continuously extended, it 

must be stored, and above all it must be consulted. Today we make the 

record conventionally by writing and photography, followed by printing; 

but we also record on film, on wax disks, and on magnetic wires. Even if 

utterly new recording procedures do not appear, these present ones are 

certainly in the process of modification and extension. 

 

Certainly progress in photography is not going to stop. Faster material 

and lenses, more automatic cameras, finer-grained sensitive compounds to 

allow an extension of the minicamera idea, are all imminent. Let us 

project this trend ahead to a logical, if not inevitable, outcome. The 

camera hound of the future wears on his forehead a lump a little larger 

than a walnut. It takes pictures 3 millimeters square, later to be projected 

or enlarged, which after all involves only a factor of 10 beyond present 

practice. The lens is of universal focus, down to any distance 

accommodated by the unaided eye, simply because it is of short focal 

length. There is a built-in photocell on the walnut such as we now have on 

at least one camera, which automatically adjusts exposure for a wide 

range of illumination. There is film in the walnut for a hundred exposures, 

and the spring for operating its shutter and shifting its film is wound once 

for all when the film clip is inserted. It produces its result in full color. It 

may well be stereoscopic, and record with two spaced glass eyes, for 
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striking improvements in stereoscopic technique are just around the 

corner. 

 

The cord which trips its shutter may reach down a man's sleeve within 

easy reach of his fingers. A quick squeeze, and the picture is taken. On a 

pair of ordinary glasses is a square of fine lines near the top of one lens, 

where it is out of the way of ordinary vision. When an object appears in 

that square, it is lined up for its picture. As the scientist of the future 

moves about the laboratory or the field, every time he looks at something 

worthy of the record, he trips the shutter and in it goes, without even an 

audible click. Is this all fantastic? The only fantastic thing about it is the 

idea of making as many pictures as would result from its use.” [6] 

 

Specifically he identifies three important properties that such a record needs to be useful: 

• Continuous Recording 

• Complete Storage 

• Accessibility 

Amazingly enough, Vannevar Bush was (correctly) unimpressed by the technical 

problems of taking the pictures, but instead points out that: “The only fantastic thing 

about it is the idea of making as many pictures as would result from its use.” Of course 

he is referring to the development of the film, which he is assuming is still necessary, and 

the selection of which pictures will be lucky enough to receive attention for development. 

His observation underlines the necessity of indexing services for the growing store of 

images. Almost 50 years before Vannevar Bush wrote his prophetic article, inventors and 

tinkerers were already making wearable cameras (see Figure 2-1). In recent history, Steve 

Mann [31] has experimented with wearable cameras as a means of artistic expression 

(e.g. lookpaintings), online mediated reality, and as a means of personal record-taking 

with the same philosophy as Vannevar Bush’s description above. However, there is a 

lack of experiments on what to do with an ever-increasing store of images obtained via a 

wearable camera. 
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Ben Akiba 

(1903) 

Bloch’s Detective Photo Scarf  

(1890) 

Photoret Watch Camera 

(1894) 

Ticka Pocket Watch Camera  

(1905) 

Above Images are copyright © 2001 George Eastman House, Rochester, NY 

Figure 2-1: Some of the earliest “wearable” cameras. 

 

Vannevar Bush further describes a device, the memex, a concept that is well known to us: 

 

Consider a future device for individual use, which is a sort of mechanized 

private file and library. It needs a name, and, to coin one at random, 

"memex" will do. A memex is a device in which an individual stores all his 

books, records, and communications, and which is mechanized so that it 

may be consulted with exceeding speed and flexibility. It is an enlarged 

intimate supplement to his memory. [6] 

 

This device seems somehow separated or unsuited for the recording of our visceral 

experiences, because he describes it as a device for recording “books, records, and 

communications”. However, he next muses about intercepting what we sense here: 

 

All our steps in creating or absorbing material of the record proceed 

through one of the senses -- the tactile when we touch keys, the oral when 

we speak or listen, the visual when we read. Is it not possible that some 

day the path may be established more directly? [6] 

 

Many have been inspired by Bush’s description of the memex, and it is in fact considered 

by many to be the conceptual pre-cursor to the World Wide Web (attributed to another 

characteristic of the memex which is the set of links between objects that the memex 
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contains).  However, let’s take a look at Bush’s last comment in his article (and this is the 

last time I will quote from him): 

 

Presumably man's spirit should be elevated if he can better review his 

shady past and analyze more completely and objectively his present 

problems. [6] 

 

Many have interpreted Bush’s word as referring to humanity in general, but what if we 

interpret them as referring to a single individual. In this case the memex becomes a kind 

of hyper-linked diary, much like the web logs, or blogs, that are turning into a WWW 

epidemic. However, no one has found a way to include the real experiences, the visceral 

experiences, of the diary writer into the diary. Even more difficult is the creation of 

associating links amongst an individual’s experiences. Let’s take a look at how and why 

researchers have started tackling this and other related problems. 

 

2.1 Multimedia Indexing 

There is a large body of research on text classification and retrieval for organizing 

information that might be found in the textual components of a memex. However, this 

work tackles the analogous problem for perceptual sensor data recorded from an 

individual’s life. How do we establish similarity between different sensor measurements 

or times of an individual’s life? Undoubtedly, this similarity metric is task-specific. Thus, 

by virtue of the data being sight and sound, a closely related field is multimedia indexing 

where scientists and engineers are building systems that attempt to organize video and 

sound.  

 

There has been a great deal of work in the last few decades concerning the problem of 

indexing databases of images and sound. The core problem in this field is to produce an 

appropriate similarity metric for comparing a given query example to objects in the 

database. Pentland et.al. [38] shows through an image sorting application, called 

PhotoBook, that in certain cases you can derive features from sets of related images 
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(eigenfeatures) whose ordering in the Euclidean sense corresponds roughly to the way a 

human would order a given set of images by similarity. Iyengar et. al. [22] extends this to 

video. Zhong et. al. [57] and later Lin et. al. [30] noticed that there is innate structure in a 

video’s low-level characteristics that often corresponds to higher-level semantic 

structures of scenes. Zhong et. al. finds this innate structure in the low-level 

characteristics by clustering and heuristically grouping segments and shows that this 

relationship does exist in some cases. Independently, Saint-Arnaud [43], Foote et. al. [17] 

and [15] found that similar to image texture, you can define a concept of auditory texture 

and use it to classify and group audio clips based on similarity. 

 

However, there is a key difference between the datasets of multimedia objects that the 

above researchers are considering and the database of daily experiences considered here. 

Day-to-day experiences are mostly routine or quasi-periodic. Theoretically the frequency 

of novel events is much lower than in TV newscasts or movies. Video surveillance 

researchers have noticed this about their data to great benefit. When you point a camera 

at a parking lot for long periods of time, with a little bit of domain knowledge you can 

easily cluster the usual from the unusual. [19] It seems our domain lies somewhere 

between movies and security video on the entropy scale.  

 

How often novel events occur in someone’s life is certainly different for each person, but 

ultimately the proportion of routine events to novel events is expected to be quite high. 

This translates into two important properties, redundancy and closure. Contrast this with 

a database of movies or images on the web. There is almost no limitation on the types of 

objects that could be present and hence a researcher using these databases can almost 

never assume that the queries will come from the same set of objects that are in the 

database. Nor will the apparent commonality of a pattern in the database necessarily have 

any relationship to the commonality of the pattern to the user.  

2.2 Context-Aware Agents 

How can person’s day-to-day behavior be recognized or predicted by a computational 

agent? If we are going to build a personal agent (wearable or not) that anticipates its 
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master’s behavior we need to be able to build at least this basic level of understanding 

into the system. [29] Agents without these abilities can only act on explicit input thus 

limiting their usefulness to virtual environments such as the Internet. For software agents 

in wearable computers, PDA’s, and cell-phones arguably most of the relevant context is 

contained in the physical world of the user and the user’s environment. Hence, to say an 

agent in this situation is context-aware or situated means that it must have sensors into 

the user’s physical world and an ability to learn the basic rules of the user’s physical 

world.  

 

Agents that recognize events in its master’s surroundings and behavior can proactively 

react without explicit direction from the master, thus expanding their usefulness into new 

domains. Agents that don’t anticipate can react and reconfigure based on the present and 

the past, but generally don’t extrapolate into the future. This is a severe limitation 

because agents without predictive power cannot engage in preventive measures, “meet 

you half way”, nor engage in behavior modification. This is not to say that a clever 

engineer couldn’t herself notice a particular situation that is clearly indicative of some 

future state, and thus, manually program an agent to anticipate that future state when the 

situation occurs. However, definitely for a wearable agent and possibly others, typical 

situations span the entire complex domain of real life where it is unreasonable to 

manually design such anticipatory behavior into an agent. Jon Orwant has addressed 

some of these issues as they apply to the graphical user-interface in his Doppelganger 

system [36].  

 

In the last 10 years there has been an explosion of efforts to bring context to 

computational agents. At Xerox, Lamming et. al. [28], used context in the form of 

location, encounters with others, workstation activity and telephone calls, as a way of 

keying information for recall. While some of the inputs to this system indirectly reflect 

the physical state of the user and his surroundings, they are limited to those physical 

activities that have a measurable effect on a system that is not designed to measure 

perceptual events (e.g. location corresponds to the user switching wireless hubs as he 

moves from room to room, typing at a workstation corresponds to a user activity, etc.). 



 23 

Complete multi-person systems (C-MAP [51] and The Conference Assistant [12]) using 

user location and history as the major context components, have also been built and 

tested for assisting participants at conferences, exhibitions, and other interaction- and 

information-rich events. The C-MAP system was unique in that one of its design goals 

was to also provide a useful record of the event and the user’s actions during the event. 

Along similar lines is Brad Rhodes’ Remembrance Agent [41] who uses limited context, 

text typed into a wearable prompt, to trigger just-in-time information. However, Rhodes 

was always the first to admit that in order to claim that an agent is truly context-aware 

that agent needs sensors into the real physical world: 

 

“Unlike desktop computers, wearable computers have the potential to 

``see'' as the user sees, ``hear'' as the user hears, and experience the life of 

the user in a ``first-person'' sense. They can sense the user's physical 

environment much more completely than previously possible, and in many 

more situations. This makes them excellent platforms for applications 

where the computer is working even when you aren't giving explicit 

commands. Health monitors, communications systems, just-in-time 

information systems, and applications that control realworld devices for 

you are all examples of these contextually aware / agent applications. 

Wearables also need these new kinds of applications more than desktop 

computers do. When sitting at a desktop computer you can expect your 

user to be interacting with the screen directly. The user's primary task is 

working with the computer. With wearables, most of the time the user is 

doing something besides interacting with the computer. They might be 

crossing the street, or enganged in conversation, or fixing a boeing 777 jet 

engine. In most cases the wearable is there in a support role at best, and 

may even be an active distraction from the user's primary task. In these 

situations the computer can't rely on the user to tell it everything to do, 

and so it needs information from the wearer's environment. For example, 

imagine an interface which is aware of the user's location: while being in 

the subway, the system might alert him with a spoken summary of an e-
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mail. However, during a conversation the wearable computer may present 

the name of a potential caller unobtrusively in the user's head-up display, 

or simply forward the call to voicemail.” [40] 

 

The realization of the importance of sensing to context-awareness for computing 

applications has sparked intense interest in wearable sensors.  Healey et. al. [21] 

constructed and experimented with a novel wearable sensor-driven agent called the 

StartleCam. It was a wearable camera integrated with a galvanic skin response (GSR) 

sensor who’s measurements are generally considered to correspond to stress levels, 

especially when induced by a startle response.  A wearable computer was programmed to 

monitor the GSR levels, detect a startle response, and respond by taking a picture via the 

worn camera. An alternate way of constructing this device that is more aligned with the 

ideas of this work, is to constantly record video and the GSR levels simultaneously. 

Later, the startle events detected in the GSR record can be used to highlight potentially 

interesting points in the video. Work by Starner et. al. [50], uses wearable cameras to 

extract information about the user’s location (omni-directional camera) and task (camera 

oriented on the user’s hands) as a user plays a mobile, multi-person game. Farringdon et. 

al. [14] uses sensors designed to monitor the user’s motions (walking, running) and 

posture (sitting, standing, lying) to determine user activity. 

 

2.3 Memory Prosthesis 

No one has yet been able to so completely record the experiences of one individual as to 

be able to go back to any moment, any second, of that person’s life and invoke a 

remembrance of that moment. With such a recording, there are theoretically opportunities 

for understanding the structure of an individual’s life for psychological, chronobiological, 

or personal agendas.  

What are the long- and short-term trends? 

What are the repeating or semi-repeating patterns? 

What part of your day is routine?  

What part of your day is novel? 
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Are your current habits, for example, number of people you talk to per day, 

different from last year? 

During what periods are you the most active? Do they come in cycles? 

In addition to these directed questions we can consider the use of this data in an 

environment that assists the user in effectively browsing his/her memories. A very 

compelling application is to use the structure extracted automatically by statistical 

analysis as scaffolding for contextualizing and compartmentalizing memorabilia that the 

user wishes to organize and inter-relate. This way the user is provided with an 

environment for browsing and exploring paths of memories along criterions other than 

time. 

 

Lamming and Flynn [28], using the ParcTab [46] system, pioneered a portable episodic 

memory aid called the Forget-Me-Not system. They also noticed that the intimacy that a 

wearable or portable device has with its user enables it to consistently record certain 

aspects of its user’s life. Since studies by [4] have confirmed that we group our memories 

into episodes, Lamming et. al. consider their device as an aid for recalling a particular 

memory episode, hence the name. However they do not attempt to organize the device’s 

captured data into a similar episodic structure even though this could greatly assist the 

user in browsing the growing store of data.  

 

If we record 10 Hz video at 640x480 with JPEG compression and audio (16kHz, 16bit 

and no compression) then we can expect 1 day to require about 5GB, 1 year  1.8TB, 10 

years  18TB, and 100 years  180TB. Based on current trends in storage density we 

can expect to fit a whole life time of video in 1 sq. in. by the year 2040 (refer to Figure 

2-2). 
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Figure 2-2: Extrapolation of the storage density of magnetic medium. We show the data storage 
requirements for recording an individual’s life for 1 year, 10 years and 100 years based on the 
storage requirements for the I Sensed data set. (Data source: IBM 2002) 

 

2.4 The Frame Problem 

As A.I. researchers built robots to perform increasingly complicated tasks at some point 

they found that even if they provide complete descriptions of the world and the rules that 

govern the robot’s world there always remained the fundamental problem of choosing 

which pieces of this knowledge to consider when constructing a solution to a given 

problem. Unless the robot has some concept of relevancy, the exponential explosion of 

contingency plans and never-ending chains of induction will inevitably swamp it. Daniel 

Dennett [11] gives an excellent account of this illusive problem. Various researchers have 

since proposed mechanisms for alleviating this problem, but none are universally 

accepted as solutions yet, mainly due to the lack of convincing demonstrations on real 

world situations (consult [11] for listing on some of these approaches). 
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For example, in 1974, Minsky [33] published a memo titled “A Framework for 

Representing Knowledge”. He outlined a structure, called a frame, that contained within 

it pointers to various pieces of knowledge that were expected to be useful in a given 

situation; not all pieces of information that could possibly be useful, only those expected 

to be useful. Thus, a frame also has a collection of constraints that need to be loosely 

satisfied in order for the frame to become “active” only in the correct situation. A frame 

specifies the expectations, predictions, or instructions about what should come result 

given that the frame’s conditions are met. Frames provide stereotypical, but perhaps 

imprecise, knowledge. The system-level purpose of these frames is to provide relevant 

context and domain-specific knowledge to a context-dependent problem-solver. The 

expectations that these frames encode are largely considered to be derived from 

experience. Thus if in the process of completing a task (e.g. making a sandwich) a 

specific problem comes up (e.g. where is the mayonnaise), then the currently active frame 

can be consulted. Frames generally encode the expected solution of a query (e.g. the 

mayonnaise is expected to be in the refrigerator, based on past experience) that is only 

usually correct. However, at least the agent can continue completing the task until an 

actual problem or inconsistency occurs (e.g. you are out of mayonnaise). This avoids 

lengthy and likely irrelevant pondering over solutions to possibly non-existent problems. 

 

Researchers in psychology [3] have also championed this idea of a frame (also referred to 

as schema) because of its apparent and compelling similarity to the episodic organization 

of human memory. While many competing theories are disagreeing on the details, the 

basic idea is that the processes associated with remembering perceptual events are 

intimately intertwined with the processes of concept formation and problem-solving. 

These frames are just collections of pointers to useful information (memories or even 

other frames) and can be seen as compartmentalizing or clustering an individual’s 

concepts and memories, essentially for the dual-purpose of efficiency and generalization. 

 

Researchers in computer vision and audition are familiar with the context problem since 

they routinely have to restrict their domains (i.e. manually specify a valid frame or set of 
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valid frames) in order for their systems to work. For example, speech recognition has 

only been successful when the environment (car, office, wheelchair) and grammar 

(switchboard task, command-and-control, spontaneous conversation) are constrained. 

Face recognition benefits when we can constrain the face database and tracking benefits 

when the lighting conditions are known. All of these systems suffer from the frame 

problem because they need to know their current context in order to apply their context-

sensitive algorithms. 

 

While this is an entirely valid and scientific approach to doing research on perceptual 

systems, it still remains to explore the mechanism for combining say a number of these 

constrained modules into a system that can smoothly and robustly handle a large variety 

of situations. This is similar to the bottom-up structures of Minsky’s Society of Mind 

[34], where simpler task-specific agents are combined to create more complex higher-

level agents. This work addresses the issue of building a perceptual system that can serve 

as the higher-level glue between more constrained task-specific perceptual agents, such 

as speech and face recognizers, or head and gesture tracking systems. 

 

A specific example of this would be as follows. Say we had available to us a speech 

recognition module that only gave reliable results when the vocabulary and auditory 

front-end processing matched the input conditions. Recognizing when to switch between 

different frames/schemata, thus affecting vocabularies or auditory front-ends, can be the 

task of a higher-level agent that is responsible for operating correctly in a large variety of 

contexts (maybe all of them), not just one. However, this higher-level agent has the same 

inputs as the speech recognizer (e.g. microphone and camera), but the nature of its task, 

recognizing situation, requires that it operate in larger variety of contexts than the speech 

recognizer. This work provides a framework for finding and recognizing the physical 

contexts that make up a person’s life. 
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2.5 Insect Perception 

 

Rather than try to use perception techniques that are usually associated with high-level 

human-like intelligence such as speech recognition or face recognition, this work relies 

on insect-level perception. We can define what this means with an example from how 

insects, specifically Cataglyphis desert ants, are believed to navigate to previously visited 

locations. Studying how insects remember locations indicates what level-of-detail is 

necessary for recordings of environments during a matching task. It has been shown that 

a number of species of insects, from bees to ants, utilize landmark features in the 

surrounding scenery to navigate. [25] If landmarks are altered or moved, then the foraging 

insect will navigate as if their target location is in the new position implied by the altered 

landmarks. Lambrinos et. al. [27] has constructed robots that are based on a model of 

desert ant navigation. Desert ants seem to use landmark features recorded from various 

positions around the site to be able to find the site again. This is very similar to the 

localization by panoramic views that researchers in robotic vision are developing [23]. 

Figure 2-3 portrays the snapshot model of Lambrinos et. al. The snapshot model 

hypothesizes that the desert ant stores snapshots of the landmark locations in from 

various viewpoints around the site. Then displacement vectors are calculated using a 

weighted combination of contributions from each landmark based on apparent difference 

in size and bearing between the current landmark appearance and the remembered 

landmark appearance. In Figure 2-4, a computational pipeline for extracting the landmark 

features for use in the snapshot model is given. The key point here is that the desert ant is 

able recognize previously visited locations and even navigate towards them using very 

simple (almost pixel-based) features extracted from the visual scene. Throughout the 

perceptual pipeline of this work I also attempt to use insect-level complexity in choice of 

features and processing, avoiding the complexity of detailed visual and auditory scene 

analysis, which generally firsts attempts to map scene constituents onto semantically 

relevant concepts. 
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Figure 2-3: The desert ant finds its home by orienting on previously remembered landmarks, (a) 
shows a typical path that desert ant takes when it has been trained to find its nest at the center of 3 
columns, (b) shows the naviagation vectors calculated from 2 example views of the landmarks using 
Lambrinos snapshot model, (c) trajectories generated by the snapshot model. (figures are 
reproduced from [27]) 

 

 

Figure 2-4: The snapshot model’s feature pipeline used by Lambrinos et. al. to construct a 
navigational robot. Starting from an omnidirectional view, then thresholding and masking to create a 
1D bitmap specifying landmark features in radial coordinates around the robot. (figures reproduced 
from [27]). 
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Chapter 3: Earlier Experiments 

During the infancy of this work our vague notions of how to proceed at the large scale 

needed guidance from some experiments done on a smaller scale. At the time we were 

considering what it would take to build a truly personal and reactive computer system, 

useful to its user all day long not just while doing specific tasks. We concluded that a 

basic requirement for such a system is that it has access to the same kind of information 

as its user, for example the ambient sights and sounds in the users environment. Also at 

the time computers were rapidly evolving from large desktop systems to miniature, 

wearable devices. The wearable computer pioneers were calling for systems that live in 

the same sensory world as its human user. [50]  

 

However, there was no previous work on how tractable data recorded from an 

individual’s day-to-day behavior is. What kinds of things could classifiers be reliably 

trained for and used to classify the sensor data? What sensors are necessary? At what 

time-scale should the analysis take place? In this intellectual environment we took a 

microphone and mounted it on the author’s shoulder, an Elmo matchstick camera with its 

lens replaced with a door-peeper* mounted on the author’s backpack pointing backwards 

and wore them for a day.  

3.1 Unsupervised Clustering of Wearable Sensor Data 

We figured that if we could cluster this data and the clusters corresponded to semantically 

relevant concepts then we would have a good idea of the feasibility of the modeling task. 

So, once the data was collected we extracted features from the audio and video with the 

                                                 
* We used the 180-degree field-of-view kind installed in hotel doors that let you see who is at your door 

even if they are trying to hide against the wall. 
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goal of clustering in mind. This meant global, coarse features that measure the visual and 

aural ambiance of the situation but gloss over the specific contents the video and audio.  

3.1.1 The Features 

The visual features were the parameters of 9 Gaussians fit to the luminance and two 

chrominance channels of the video in 9 regions. The regions were manually determined 

based on qualitative evaluation of the typical optical flow patterns of the video, and an 

eye towards roughly separating the foreground and background pixels. The 9 regions are 

shown in Figure 3-1. This resulted in 81 features (9 Gaussians each with 9 parameters: 3 

mean plus 6 covariance). The means of the Gaussians measure the overall color and 

illumination in each region while the covariance features represent the shape of the color 

distribution. 

 

 

Figure 3-1: The 9 regions used to aggregate the visual features. 

 

The auditory features were 25 filter-banks arranged on a Mel-scale in frequency to match 

the capabilities of humans to discriminate adjacent frequencies. [37] Both sets of features, 

audio and video, were calculated at a rate of 10Hz. 

 

3.1.2 Time Series Clustering 

 The algorithm we used to cluster time series data is a variation on the Segmental K-

Means algorithm [39] [24]. This algorithm is typically used during the training pipeline 

of a continuous speech recognition system when time-aligned labels at the phonemic 

level are not available. It tries to align a given sequence of symbols to raw feature data. In 

our case we don’t even have the sequence of symbols so we have adapted the procedure 

as follows: 
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Given: N, the number of models, T the number of samples allocated to a state, S, the 

number of states per model, f the expected rate of class changes. 

Initialization: Select N segments of the time series each of length T*S, spaced 

approximately 1/f apart. Initialize each of the N models with a segment, using linear state 

segmentation.  

Segmentation: Compile the N current models into a fully connected grammar. A nonzero 

transition connects the final state of every model to the initial state of every model. Using 

this network, re-segment the cluster membership for each model. 

Training:  Estimate the new model parameters using the Forward-Backward algorithm on 

the segments from step 3. Iterate on the current segmentation until the models converge 

in likelihood and then go back to step 3 to re-segment. Repeat steps 3 and 4 until the 

segmentation converges. 

 

3.1.3 Time Hierarchy 

Varying the frame-state allocation number directs the clustering algorithm to model the 

time-series at varying time scales. In the Initialization step, this time scale is made 

explicit by T, the frame-state allocation number, so that each model begins by literally 

modeling S*T samples. Of course, the re-estimation steps adaptively change the window 

size of samples modeled by each HMM. However, since EM is a local optimization the 

time scale will typically not change drastically from the initialization. Hence, by 

increasing the frame-state allocation we can build a hierarchy of HMMs where each level 

of the hierarchy has a coarser time scale than the one below it. 

 

3.1.4 Representation Hierarchy 

There are still important structures that just clustering at different time scales will not 

capture. For example, suppose we wanted a model for a supermarket visit, or a walk 

down a busy street. As it stands, clustering will only separate specific events like 

supermarket music, cash register beeps, walking through aisles, for the supermarket, and 

cars passing, crosswalks, and sidewalks for the busy street. It will not capture the fact that 
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these events occur together to create scenes, such as the supermarket scene, or busy street 

scene*.  

 

We address this shortcoming by adapting a hierarchy of HMMs much a like a grammar. 

So beginning with a set of low-level HMMs, which we will call event HMMs (like 

phonemes), we can encode their relationships into scene HMMs (like words). The 

process is as follows: 

 

Detect: By using the Forward algorithm with a sliding window of length tV , obtain the 

likelihood, ( ) ( ,..., | )t t tL t P O Oλ λ+∆=  for each object HMM, λ , at time, t . 

Abstract:  Construct a new feature space from these likelihoods, 

1( )

( )

( )N

L t

F t

L t

 
 =  
  

M  

Cluster: Now cluster the new feature space into scene HMMs using the time-series 

clustering algorithm. 

 

For the event HMM layer, we constrained ourselves to left-right HMMs with no jumps 

and single Gaussian states. The reason for this is that we would like to restrict the HMMs 

to find distinct sequences that occur over and over again. Using an ergodic HMM here 

would cause the clustering to group sequences that might be permuted versions of each 

other but with the same overall dynamics. However, our concepts of scenes as collections 

of event sequences that happen together fits well with the modeling bias of an ergodic 

HMM, hence we use ergodic HMMs to represent scenes. 

 

                                                 
* Notice that simply increasing the time scale and model complexity to cover the typical 

supermarket visit is not feasible for the same reasons that speech is recognized at the 

phoneme and word level instead of at the sentence and paragraph level. 
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We evaluated our performance by noting the correlation between our emergent models 

and a human-generated transcription.  Each cluster plays the role of a hypothesis. A 

hypothesis is verified when its indexing correlates highly with a ground truth labeling.  

Hypotheses that fail to correlate are ignored, but kept as ``garbage classes''. (Hence, it is 

necessary to have more clusters than ``classes'' in order to prevent the useful models from 

having to model everything.) In the following experiments we restricted the system to 

two levels of representation (i.e. a single object HMM layer and a single scene HMM 

layer). The time scales were varied from 3 secs to 100 secs for the object HMMs, but 

kept at 100 secs for the scene layer. 
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Figure 3-2: Coming Home: this example shows the user entering his apartment building, going up 3 
stair cases and arriving in his bedroom. The vertical lines depict the system’s segmentation. 
Manually selected key frames are shown with each segment. 

 

Short Time Scale Object HMMs: In this case, we used a 3 sec time-scale for each object 

HMM and set the expected rate of class changes, f, to 30 secs. As a result, the HMMs 

modeled events such as doors, stairs, crosswalks, and so on. To show exactly how this 

worked, we give the specific example of the user arriving at his apartment building. This 

example is representative of the performance during other sequences of events. Figure 

3-1 shows the features, segmentation, and key frames for the sequence of events in 

question. The middle plot represents the raw feature vectors (top 81 are video, bottom are 
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audio). Notice that you can even see the users steps in the audio section of the features 

(81-106). 

 

Long Time-scale Object HMMs: Here we increase the time-scale of the object HMMs to 

100 secs.  The results are that HMMs model larger scale changes such as long walks 

down hallways and streets.  

 

As a measure of the validity of our clustered HMMs we present the correlation 

coefficients between the independently hand-labeled ground truth and the output 

likelihood of the highest correlating model. The table below shows the classes that the 

system was ably to reliably model from only 2 hours of data: 

 

Label Correlation Coefficient 

office 0.91 

lobby 0.72 

bedroom 0.86 

cashier 0.83 
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Figure 3-3: The clustering result at the scene level. 
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Long Time-scale Scene HMMs: We also constructed a layer of scene HMMs that are 

based on the outputs of the Short Time-scale Object HMMs from above. Where before 

we were unable to clean classes for more complex events, like the supermarket visit and 

walk down a busy street, now this level HMMs is able to capture them. The following 

table gives the correlations for the best models: 

Label Correlation Coefficient 

dormitory 0.80 

Charles River 0.70 

factory area 0.75 

sidewalk 0.78 

video store 0.98 

 

Figure 3-4 and Figure 3-5 show the likelihood traces for the models that correlated with 

``walking down a sidewalk'' and ``at the video store''. While the video store and sidewalk 

scenes have elements that overlap with other scenes, their clustered models are able to 

select only the occurrences of their associated scenes. The fact these scenes could be 

clustered from data using HMMs is an indication that the concept of a scene corresponds 

in some manner to the statistical structure in the data.  

 

It turns out that similarly scene-like clusters were not obtainable if we just use simple K-

means clustering that ignores temporal statistics. Furthermore, trying different features 

such as color histograms, FFTs, image moments, etc. all led to basically the same results. 

This leads us to deduce two important characteristics of our task. First, it is the dynamics 

of the features that provides the discriminative power of our models. The supermarket is 

dissimilar from the video store not because they have different ambiance (in fact their 

time-averaged feature statistics are identical) but rather the subject behaves differently in 

each scene thus inducing different temporal dynamics. In the video store there is no long 

periods of no motion punctuated by motion as the subject moves from one wall of videos 

to the next. In the supermarket the subject is essentially always in motion. The second 

characteristic is that the pertinent scale of features is peripheral as opposed to attentive.  
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Figure 3-4: The ground truth and corresponding likelihood trace of the most correlated HMM for 
the sidewalk scene. 
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Figure 3-5: The ground truth and corresponding likelihood trace of the most correlated HMM for 
the vide store scene. 
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3.2 Capturing the Dynamics of Situations 

Supervised methods are useful when the application at hand has a well-defined set of 

situation classes that must be accurately classified. Examples of each situation are 

provided and used to build models for automatically transcribing other examples of 

unknown situations. We now show that situation can be successfully classified by 

likelihood ratio tests with Hidden Markov Models (HMM) on color image moments 

features (visual ambience) and long-term auditory features (auditory ambience) collected 

from each situation. These features serve a similar role that the landmark features do for 

the desert ants in that they provide a noisy discriminatory function for matching places 

without context. However, differently from the ant, we do not have control over how the 

user moves, so an HMM is used to model the temporal variation of the situation’s 

ambiance.  

 

In these supervised learning experiments, we show that accurate situation classification 

with coarse features is possible and determine the complexity of the statistical model 

required for the task. The supervised learning of situation models worked well enough 

that we were guided to cluster the visual features and search for correspondences between 

the clusters and situation classes. The results were enticing and led us to the work you 

will see later on in the chapters to follow. 
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Camera and Microphone

Input device for labeling

 

Figure 3-6: The wearable used in the experiments on situation dynamics and transitions. It is a 
primitive data collection system consisting of a pinhole camera mounted on a shoulder strap and a 
handheld mouse pad for data entry and labeling. 

 

For the remaining experiments in this chapter we used the data collection wearable 

shown in Figure 3-6. This is a precursor to the more advanced wearable we will introduce 

later on for the I Sensed data set. The compute power and onboard storage is provided by 

a PII Sony Picturebook.  

3.2.1 Video Feature Set 

For the video images, we calculated spatial moments in each of the color channels, Y, Cb 

and, Cr. Mindru et. al. [32] has shown that image moments are useful for recognizing 

spatial patterns of colors while being robust to angle of approach. Thus we use them here 

too, however we will see later on that many types of features could be suitable for this 

task. The specific image moments used to build our visual features are: 
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, , [ ]c i jP t  is the value of the color channel, c, for the pixel, (i,j) and H and W are the image 

extents. This yields a 12 dimensional feature vector, 3 color channels by 4 moments. 
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The 4 types of image moments (as determined by the exponent of the pixel location) 

measure 3 aspects of the spatial pixel distribution: mass, geometric center, and geometric 

spread. For example the figure shows an abstract image with its dominating pixel 

distributions in each color channel. The red brick wall will tend to draw the geometric 

center (middle panel) of its color channel to the right and the last moment will measure 

how spread out or concentrated most of the energy in each channel is. The visual features 

were calculated at 5Hz. 

3.2.2 Audio Feature Set 

For the audio, we simply calculate a spectrogram using a 1024-pt FFT at a 15Hz frame-

rate. The spectrogram was passed through a bank of 11 Mel-scale filters to map the linear 

frequency sampling of the FFT to the more perceptually relevant log-like scale. [37] This 

yields 11 coefficients per unit time. The resulting time sequence of spectral coefficients 

was then low-pass filtered with a single-pole IIR filter with a time constant of 0.4 

seconds: 

 

[ ] 0.999 [ 1] [ ]y t y t x t= − +  

and subsequently sampled at 5Hz. A similarly low-passed filtered estimate of energy is 

also calculated for a grand total of 12 auditory features. These kind of coarse features for 

auditory scene analysis (ASA) are thematically similar to the features used in non-speech 

specific works such as [43] and [17]. The goal of such features is to capture the ambience 

or textural characteristics of the auditory environment. We had shown in [9] that long-

term auditory characteristics tend to identify with distinct situations and that we can in 

fact detect scene changes by noting changes in the long-term spectral distribution (see 

Figure 3-7). 
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Figure 3-7: Scene change detection via auditory clustering (top), hand-labeled scene changes 
(middle), scene labels (bottom). The large error (marked in green) during the supermarket scene is 
due to noise from construction work happening on a section of the store interior. 

 

3.2.3 Situation Dynamics 

As our initial experiments into situation modeling indicated, we cannot discriminate 

sitatutions based solely on their static feature statistics. Many will appear the same from a 

time-average point of view. The user’s motion and activity in the environment are both 

particular to a situation and combine to give a situation its own temporal signature. The 

ergodic HMM is a natural choice to model a temporal signature. Each situation class is 

assigned an HMM which is trained on a labeled set of data in a way that emphasizes the 

short-term dynamic texture of each location. 
 

 

To train the HMMs, each labeled example of a location was divided into 2 sec. windows 

(or equivalently, 10N =  feature vectors at 5Hz) of features. These windows of features 

were gathered into one set and used to train the class HMM (via Expectation-

Maximization). By design, the class HMMs, when trained in this way, end up modeling 

the “dynamic texture” of a location at a 2 second time-scale. An ergodic HMM was 
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chosen, as opposed to say a left-right HMM, since we can expect highly variable 

dynamics at such a short time-scale. Using a more specific topology would imply that we 

know what kind of dynamics to expect in the situation features. 

3.2.4 Model Evaluation 

We now separately evaluate each model’s accuracy of detecting and rejecting the location 

it was trained for. So, to determine for each time, t, the probability of a given location, the 

Forward-Backward algorithm was used to yield,  

log ( ,..., | 1)t N tP x x y− =  

When using the trained HMMs to evaluate the probability of a class given a window of 

features, ( | ,..., )t N tP y x x− , it is necessary to estimate: 

( ,..., ) ( ,..., | 1) ( 1)

( ,..., | 0) ( 0)
t N t t N t

t N t

P x x P x x y P y

P x x y P y
− −

−

= = =
+ = =

 

(Notice we are not assuming that at any given point in time only one class can be active.) 

The first term is given by the Forward-Backward algorithm, but the second term is not 

available to us. Training a second HMM (i.e. a garbage model) on the training data that is 

not labeled as being part of the class has been tried. However, this training set is in most 

cases utterly incomplete and hence the garabage HMM does not model everything 

outside of the given class. So when data outside of the training set is encountered, the 

garbage model’s likelihood often drops, artificially and incorrectly increasing the class 

probability. 

 

So we are still left with the problem of recovering a class probability from the HMM log 

likelihood. Approaching the problem from a totally different perspective. When 

thresholding probabilities, the correct MAP threshold for 2-class problems is 0.5thresholdp = . 

Fortunately, there is a prinicipled manner for determining,  
1 1( ) (0.5)threshold thresholdl pφ φ− −= =  

and that is by the Receiver-Operator Characteristic (ROC). The log likelihood threshold 

that achieves the Equal Error Rate (EER) point on the ROC curve is the value that should 

be mapped to a probability of 0.5. The mapping for the 2 remaining intervals, [0 0.5) and 

(0.5, 1], by histogramming the log likelihoods in each set and calculating the cumulative 



 44 

distribution function (cdf). We took these 2 cdf’s and concatenated them to produce one 

continuous mapping function, φ , that assigned all log likelihoods to [0, 1] with 

( ) 0.5thresholdlφ = . The effect of this mapping is to whiten the distribution of likelihoods 

observed for each model based on the training set. The result is a normalized score that 

mimics ( | ,..., )N t tP y x x− , and is appropriate for inter-model comparison. 
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Figure 3-8: The histogram based mapping from raw log likelihood to a classification score. 

 

 Accuracy (EER) 
Locations A+V A V 

BorgLab 95.9 56.2 97.1 

BTLab 97.3 63.8 98.8 

Courtyard 92.2 64.9 93.0 

Elevator 99.8 58.0 98.4 

Lower Atrium 95.7 88.7 87.3 

Upper Atrium 95.0 56.3 96.0 

Office 96.0 87.3 93.5 

Table 3-1: EER results for correct detection of 7 situations using audio and video features together 
and separately. 

3.2.5 Results 

Table 3-1 lists the recognition rates for situation classification at the equal error rate (EER). While video 

clearly outperforms the audio, it is intuitively pleasing to see that even audio by itself provides quite a bit of 

information for recognizing the situation.  In fact in situations like the “Lower Atrium” the audio and video 
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separately can only discriminate the situation less than 90% of the time. However, combining the two 

modalities gives nearly 96% accuracy. These results are based on equal weighting of the audio and video. 

Theoretically, Bayesian selection of these weights would prevent the reduction of performance by 

combining the audio and video modalities. 

3.2.6 Temporal Constraints 

Consecutive situations are typically related in a probabilistic manner. If our situations 

correspond with locations then there is a definite constraint on how one can transition 

from situation to the next.  

 

A table of conditional probabilities, 1( | )t tP y i y j−= = , where , { }i j situations∈ , (even an 

approximate one) can greatly constrain perplexity and thus boost the performance of the 

regular situation classification. More importantly it could allow us to solve for the 

correspondence between situations and unlabeled clusters in the data and thus greatly 

reduce the amount of labeled data that training requires. Here is the geographic constraint 

network for the situation recognition subtask, its use boosts the recognition rates for all 

situations to 100% when using visual features: 
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3.3 Between Situations 

The previous experiments discriminated situations by modeling the dynamics of the 

features during a given situation. However, in doing so we are ignoring another source of 

information, which is how we move from one situation to the next. The transition 

between to distinct situations can be much more distinctive then either situation itself. We 

test this by trying to recognize with high temporal accuracy the act of entering/leaving 3 

separate locations: 

 

1. Enter Office 

2. Leave Office 

3. Enter Kitchen 

4. Leave Kitchen 

5. Enter Black Couch Area (BCA) 

6. Leave BCA 

 

Please see Figure 3-9 for a map of the area. The 3 boxes refer to the areas that were 

labeled whenever the user entered or left them. The path connecting these areas is not an 

actual path but just an estimation of the usual route that the user took to get between these 

3 areas.  

 

Other than the selection of the 3 areas for labeling, the conditions of this experiment were 

quite freeform. No effort was made to control for spontaneous situations since we wished 

to collect data under the most natural conditions possible.  

• Natural movement and posture 

• Spontaneous conversations in the hallway 

• Constant shifting of the sensor package on the user’s body. 

Basically, we want to emphasize that except for the user having a handheld device for 

labeling the exact moment when the transition occurred, all other conditions were kept as 

natural as possible.  
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Figure 3-9: Location Map 

 

EVENTS # OF EXAMPLES 

Leave Office 31 

Enter Office 27 

Leave BCA 21 

Enter BCA 22 

Leave Kitchen 21 

Enter Kitchen 22 

Table 3-2: The Data Set 

 

The transitions (1-6) were labeled with impulses in time. For example when the user 

entered the kitchen, he marked the moment he passed through the doorway by pressing 

the label button on the handheld touch pad. See Table 3-2 for the number of labels 

collected for each event. For each of the events we partitioned the sets into separate 

training sets and testing sets. 

 

 

3.3.1 The Models 

The models used for determining the occurrence of events from the sensor stream were 

again ergodic HMMs. We trained an HMM on each of the six events separately. 

Classification was achieved by using the Viterbi algorithm to obtain an estimate of the 

event likelihood for a window of features. If the likelihood exceeded a threshold then the 

event was triggered.  
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Figure 3-10 Overview of the Baseline System: 24 dimensional A/V features sampled at 5Hz enter the 
training pipeline at the left. HMMs are trained with varying numbers of states and window sizes. The 
HMMs that give maximum testing performance are selected. 

 

To construct the training examples we took a time window of features around each of the 

impulse labels in the training set. This same window size was used in the Viterbi 

algorithm during classification. The window size represents the model’s use of context, 

so that larger window sizes mean more context is taken into account. Each state in the 

HMMs were constrained to have a single Gaussian. However, this still leaves the number 

of states and the window size undetermined. Since we would like to know what the 

necessary complexity of model and length of time integration is required we decided to 

search for these parameters based on per-class performance. 

 

We selected the parameters using brute force search over a range of state counts and 

window sizes. Using classification accuracy as the selection criterion, we iterated over 

state counts from 1-10 and window sizes from 2-20 secs. See Figure 3-10 for a flow 

diagram of the training procedure just described and Figure 3-11 for an example of a 

criterion surface. 
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Figure 3-11 Accuracy vs. Free Model Parameters: this plot shows classification accuracy for the 
Enter Kitchen task for different HMM sizes and window sizes. 

3.3.2 Results 

We evaluated the models on a separate test set and obtained the following classification 

results. Since the thresholds for each model still needed to be determined we calculated 

Receiver-Operator Characteristic (ROC) curves for each model. The resulting curves are 

shown in Figure 3-12. We used the Equal Error Rate (EER) criterion (i.e. cost of false 

acceptance and of correct acceptance are the same) to choose optimal points on the ROC 

curves. Table 3-3 gives the resulting accuracies and the associated model parameters for 

each event. 

Events # of States Window Size (secs) Accuracy (%) 

Leave Office 8 20 85.8 

Enter Office 2 11 92.5 

Leave BCA 3 20 92.6 

Enter BCA 7 20 95.7 

Leave Kitchen 1 4 99.7 

Enter Kitchen 7 11 94.0 

Table 3-3: The resulting model parameters and accuracies (based on EER) for each event/class. 

The next plots (Figure 3-13, Figure 3-14, Figure 3-15, and Figure 3-16) give the actual 

likelihood traces for the best and worst performing event models overlaid with the ground 

truth labels. Although in both cases the likelihood traces are quite noisy, the peak 
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separation near actual labels is quite good (as supported by the ROC curves). Leave 

Kitchen (Figure 3-13) had the best performance with 99.7% accuracy achieved with just a 

1 state HMM trained on 4 sec. feature windows. Leave Office (Figure 3-15) had the worst 

performance with 85.8% achieved with an 8 state HMM trained on 20 sec. feature 

windows. Notice that the window sizes exhibit themselves in the time resolution of the 

classifiers (Figure 3-14 and Figure 3-16). 

 

These results are actually quite surprising considering the lack of context (at most only 20 

seconds of features are used) and the coarse features. The classification accuracy is high 

in both acceptance and rejection. In fact the temporal resolution for some of the classes is 

pleasantly high (4 secs for the act of leaving the kitchen).  
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Figure 3-12 Receiver-Operator Characteristic (ROC) Curves for each model when tested on the test 
set and varying the threshold on the likelihood. 
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Figure 3-13 Leave Kitchen Classification: This class achieved the best classification performance of 
all the classes and it used a 1 state HMM trained on 4 sec feature windows. This figure shows approx. 
1 hr. of performance on the test set. 
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Figure 3-14 Leave Kitchen Classification (Zoom): This figure zooms in on a particular event in Figure 
3-13. Notice the width of the likelihood spike is similar to the window size of this model (i.e. 4 secs). 
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Figure 3-15 Leave Office Classification: This class achieved the worst classification performance of 
all the classes and it used a 8 state HMM trained on 20 sec feature windows. This figure shows 
approx. 1 hr. of performance on the test set. 
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Figure 3-16 Leave Office Classification (Zoom): This figure zooms in on a particular event in Figure 
3-15. Notice the width of the likelihood spike is similar to the window size of this model (i.e. 20 secs). 
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3.4 Discussion 

We have now gone over a few small-scale experiments in clustering and recognizing a 

user’s situation.  We can believe now that coarse features that capture the global state of 

the surroundings are sufficient to discriminate situations. It seems complex methods for 

obtaining variance to lighting and orientation are not required. However, at this point 

considering the limited size of the data sets used, we can only claim these as good rules 

of thumb that have not been sufficiently validated. So, in the following experiments in 

this thesis we take these concepts and apply them to a much more extensive data set to 

search for the limit of the ability of statistical models to extract experiential structure 

from raw low-level sensory data. 
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Chapter 4: Data Collection & Methods 

Our lives are not random. They certainly exhibit structure at all time-scales. How is this 

structure organized? What are its atomic elements? What is the network of dependencies 

connecting the past, present, and future moments? These are big questions, which we 

cannot address completely. However, through a few guiding principles (which we 

describe next) we can limit our analyses to an appropriate level-of-detail, thus enabling us 

to reasonably tackle the above questions. Since these questions need hard data to produce 

answers, we also address how to collect measurements of an individual’s experiences and 

describe how we overcame this hurdle. 

 

When the detective tries to understand the mind of the criminal, he attempts to place 

himself in the criminal’s state of mind, duplicating the experiences and encounters that 

the criminal might have had up to and including the scene of the crime. This makes it 

possible for the detective to infer the missing pieces of evidence and perhaps predict the 

criminal’s next move. Mapping this intuition to the case of a computational agent (the 

detective) and its user (the criminal), means that we should provide the computational 

agent the same inputs the user is receiving so as to allow the agent to understand or 

habituate to the experiences and thus perhaps predict future experiences of its user. This 

implies that we use wearable sensors that are unobtrusively integrated into the user’s 

clothing. Furthermore, we will concentrate our efforts on sensors that parallel biological 

perception: vision, audition, and vestibular. Lastly, we must be able to capture the 

subject’s experiences for as long as is reasonably possible. First-person, long-term sensor 

data is a guiding principle for our overall approach. 

 

The second principle guiding this work is the use of peripheral or context-free perceptual 

methods. The definition of a context-free method is an algorithm or system that is 

effective in any context, thus independent of lighting, background auditory conditions, 
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etc. Context-free methods generally rely on global features such as color histograms or 

optical flow in vision and spectrograms and peak tracking in the audio to provide useful 

descriptions of the raw sensor data. Thus if we have a speech detection module that 

operates robustly in most conditions, we can include it as a context-free perceptual 

method. Contrast this with the use of attentive or context-specific perceptual modules, 

such as today’s state-of-the-art speech recognizers [55] [56] [7] [20] or face recognition 

systems [35] [53] that require knowledge of the current context in order to operate. 

 

The third guiding principle of this work owes its inspiration to insect-level perception. It 

is inappropriate given the current state of the art to tackle the problem of how to give a 

machine human’s level understanding of an individual’s daily behavior without first 

granting it with an insect’s level of understanding. Perhaps in certain cases, we can obtain 

near-human understanding by severely restricting the domain. However, in this work the 

completeness of the domain, that is an individual’s day-to-day life, is a priority and hence 

we are guided to the more appropriate level of perception portrayed by insects. Similar to 

the representation-free approach of Rod Brooks, we avoid building complete models of 

the user’s environment and instead rely on the redundancies in the raw sensor data to 

provide the structure. This philosophy implies the use of coarse level features and 

emphasizes robustness over detail (such as in the use of context-free methods over 

context-specific methods). 

 

In this work we took a straightforward approach to addressing the issues of a similarity 

metric and temporal models of life patterns. We collected long-term sensor measurements 

of an individual’s activity that enables the extraction of atomic elements of human 

behavior, and, the construction of classifiers and temporal models of an individual’s day-

to-day behavior. I will describe this data set and then describe in more detail methods for 

building coarse descriptions of the world, and thus a similarity metric. Last, we describe 

methods for extracting temporal models based on these coarse event descriptions. 
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4.1 The I Sensed Series: 100 days of experiences∗∗∗∗ 

The first phase in statistically modeling life patterns is to accumulate measurements of 

events and situations experienced by one person over an extended period of time. The 

main requirement of learning predictive models from data is to have enough repeated 

trials of the experiment from which to estimate robust statistics. Experiential data 

recorded from an individual over a number of years would be ideal. However, other 

forces such as the computational and storage requirements needed for huge data sets 

force us to settle for something smaller. We chose 100 days (14.3 weeks) because, while 

it is a novel period for a data set of this sort, its size is still computationally tractable 

(approx. 500 gigabytes).  

 

                                                 
∗ The term “I Sensed” comes from a piece of historical conceptual art that has played a part in inspiring this 

thesis. In the 70’s there was a Japanese conceptual artist named Kawara On [26]  O. Kawara, On 

Kawara: date paintings in 89 cities, Museum Boymans-Van Beuningen, Rotterdam, 

1992., who was in a way obsessed with time and the (usually) mundane events that mark its passage. His 

works such as the I Met and I Went series explored the kind of day-to-day events that tend to fall between 

the cracks of our memories. For years, everyday Mr. On would record the exact time he awoke on a 

postcard and send it to a friend or create lists of the people he met each day or trace on maps where he went 

each day. Other relevant works are his I Got Up At, I Am Still Alive, and the I Read series. His work raises a 

few interesting questions. If we had consistent records of some aspects of our day-to-day lives over a span 

of a lifetime, what trends could we find? What kinds of patterns or cycles would reveal themselves? 

Interestingly, we wouldn’t need highly detailed memories to find these trends and patterns, just a consistent 

sampling in time. One of my dreams is to build a device that can capture these life patterns automatically 

and render them in a diary-like structure. 
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Figure 4-1: The Data Collection wearable when worn. 

 

The wearable was worn from mid-April to mid-July of 2001 by the author. Refer to 

Figure 4-5 for actual excerpts from this data set during 4 example situations: eating 

lunch, walking up stairs, in a conversation, and rollerblading. 

 

We designed and followed a consistent protocol during the data collection phase. Data 

collection commences each day from approx. 10am and continues until approx. 10pm. 

This varies based on the sleeping habits of the experimental subject. The times that the 

data collection system is not active or worn by the subject is logged and recorded. Such 

times are typically when: batteries fail, sleeping, showering, and working out. 

 

In addition to the visual, aural, and orientation sensor data collected by the wearable, the 

subject is also required to keep a rough journal of his high-level activities to within the 

closest half hour. Examples of high-level activity are: “Working in the office”, “Eating 

lunch”, “Going to meet Michael”, etc. while being specific about who, where, and why. 

Every 2 days the wearable is “emptied” of its data, by uploading to a secure server. 

 

Persons who normally interact with the subject on a day-to-day basis and have a 

possibility of having a potentially private conversation recorded are asked to sign a 

consent form in which we formally agree to not disclose recordings of them in anyway 

without further consent. This way my data collection experiments were in full accordance 

with the Massachusetts state laws on recording audio & video in public. 
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DATA COLLECTION WEARABLE

 

Figure 4-2: Comparison of the field-of-view for the common household fly and the data collection 
wearable used in the I Sensed series. 

4.1.1 The Data Collection Wearable 

The sensors chosen for this data set are meant to mimic insect senses. They include visual 

(2 camera, front and back), auditory (1 microphone), and gyros (for 3 degrees of 

orientation: yaw, pitch and roll). These match up with the eyes, ears, and inner ear 

(vestibular), while taste and smell are not covered because the technology is not available 

yet. The left-right eye unit placement on insects differs from that front-back placement of 

the cameras in our system. However, they are qualitatively similar in terms of overall 

resolution and field-of-view (see Figure 4-2). Other possibilities for sensors that have no 

good reason for being excluded are temperature, humidity, accelerometers, and bio-

sensors (e.g. heart-rate, galvanic skin response, glucose levels). The properties of the 3 

sensor modalities are as follows (see Figure 4-4):  

 

Audio: 16kHz, 16bits/sample (normal speech is generally only understandable for persons 

in direct conversation with the subject.) 

Front Facing Video: 320x240 pixels, 10Hz frame rate (faces are generally only 

recognizable under bright lighting conditions and from less than 10ft away.) 

Back Facing Video: 320x240 pixels, 10Hz frame rate (faces are generally only 

recognizable under bright lighting conditions and from less than 10ft away.) 
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Orientation: Yaw, roll, and pitch are sampled at 60Hz. A zeroing switch is installed 

beneath the left strap that is meant to trigger whenever the subject puts on the wearable. 

Drift is only reasonable for periods of less than a few hours. 

 

The wearable is based on a backpack design for comfort and wardrobe flexibility. The 

visual component of the wearable consists of 2 Logitech Quickcam USB cameras (front- 

and rear-facing) modified to be optically compatible with 200° field-of-view lenses 

(adapted from door viewers). This means that we are recording light from every direction 

in a full sphere around the user (but not with even sampling of course). The front-facing 

camera is sewn to the front strap of the wearable and the rear-facing camera is contained 

inside the main shell-like compartment. The microphone is attached directly below the 

front-facing camera on the strap. The orientation sensor is housed inside the main 

compartment. Also in the main compartment are computer (PIII 400Mhz Cell Computer) 

with a 10GB hard drive (enough storage for 2 days) and batteries (operating time: ~10 

hrs.). The polystyrene shell (see Figure 4-1) was designed and vacuum-formed to fit the 

components as snuggly as possible while being aesthetically pleasing, presenting no 

sharp corners for snagging, and allowing the person reasonable comfort while sitting 

down. 

 

Since this wearable is only meant for data collection, its input and display requirements 

are minimal. For basic on/off, pause, record functionality there are click buttons attached 

to the right-hand strap (easily accessible by the left-hand by reaching across the chest). 

These buttons are chorded for protection against accidental triggering. All triggering of 

the buttons (intentional or otherwise) is recorded along with the sensor data. Other than 

the administrative functions, the buttons also provide a way for the subject to mark 

salient points in the sensor data. The only display provided by the wearable is 2 LEDs, 

one for power and the other for recording. 
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4.1.2 The Data Journal 

Organizing, accessing, and browsing such a large amount of video, audio, and gyro data 

is a non-trivial engineering task. So far we have a system that allows us to fully transcribe 

the “I Sensed” series and to access it arbitrarily in a multi-resolution and efficient 

manner. This ability is essential for learning and feature extraction techniques talked 

about later in this paper. All data (images, frames of audio, button presses, orientation 

vectors, etc.) are combined and time synchronized in our data journaling system to 

millisecond accuracy (see Figure 4-3). 
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Day  1     2     3     4     5     6     7     8     9    10    11    12    13    14    15    16    17    18    19    20

10 am 11 am 12 pm 1 pm 2 pm 3 pm 4 pm 5 pm 6 pm 7 pm 8 pm  

Figure 4-3: The Data Journal System: provides a multiresolution representation of the time-synchronized sensor data. 
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Figure 4-4: The Data Collection Wearable Schematic 
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Orientation Audio Spectrogram

Rear View Front View

OrientationAudio Spectrogram

Rear ViewFront View

Orientation Audio Spectrogram

Rear View Front View

Orientation
Audio Spectrogram

Rear ViewFront View

Scene 1: Eating Lunch

Scene 2: Walking Up Stairs

Scene 3: Rollerblading

Scene 4: In A Conversation

 

Figure 4-5: Some excerpts from the "I Sensed" series 
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Chapter 5: The Similarity Measure 

Before we can answer any of the questions about classification, prediction or clustering, 

we first need to determine an appropriate distance metric with which to compare 

moments in the past. We will look at how to determine what are the appropriate intervals 

to be comparing and how to quantify their similarity. While doing so we present new 

methods for data-driven scene segmentation. We will then present methods for 

determining the similarity of pairs of moments that span time-scales from seconds to 

weeks. The tools we build up in this chapter provide the foundations for classification 

and prediction.  

5.1 The Features 

The first step in aligning sensor data is to decide on an appropriate distance metric on the 

sensor output. Possibly the simplest similarity measure on images is the L1 norm on the 

vectorized image. Computer vision researchers typically avoid using such a simple metric 

because of its vulnerability to differences in camera position and orientation and opt 

instead for orientation-invariant representations, such as color histograms or image 

moments. However, as mentioned before there is clear evidence [54] that insects (and in 

many cases humans) store view-dependent representations of their surroundings for later 

recall and matching. In this case the dependency of the image and the camera position 

and orientation is an advantageous one. Throwing away the information that links an 

image to the state of the camera at the moment of capture doesn’t make sense when the 

task is to situate the camera wearer. 

 

There is an interesting side-note on the choice of the exponent in the Minkowski metric. 

Researchers in biological perception have noticed repeatedly that simple creatures such 

as insects (particularly bees) appear to use an L1 norm on visual discrimination tasks, but 

as the creature gets more complex (say humans) they discretely switch between the L1 
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and L2 norms (see Figure 5-1 from [42] for more details.) depending on the 

preconceptions they bring to the task. There is also evidence of humans using the L4 

norm. A few researchers [18] [49] have even gone so far as to say these two metrics are 

indicative of two types of mental processing, city-block indicates “analytic” processing, 

while the Euclidean indicates “holistic” processing.  A more practical suggestion is that 

the choice of metric is dependent on the how the features combine to produce the 

perceived input. [18] [2] Attributes that are perceived in aggregated form, such as the 

hue, saturation and brightness of a color, are appropriate for the Euclidean metric. 

Attributes that are separable, such as the amount of light falling on an array of photo-

sensors, are ideal for the city-block metric. 

 

Figure 5-1: Histogram of the exponent of the Minkowski metric that best fit the performance of 27 
human subjects on a size- and brightness-discrimination task. (reproduced from [42]) 

Our distance metric between images in defined directly in terms of the pixels of the 

image: 

3

( , ) ( ) ( )
W H

ij ij
i j c

D x y x c y c= −∑∑∑  

( ) pixel's c-th channel value at (i,j) of image xijx c =  

Thus, it is directly influenced by the size, shape, color, and position of objects in view. 

Contrast this to color histogram-based metrics that are invariant to position and shape, but 

are sensitive to size and color. The L1-norm on images is very good at discriminating 

different images, but probably one of the worst metrics for achieving any kind of 

generalization or robustness to noise. Our decision to use this metric for alignment rests 

on two observations.  
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First, given the size and coverage of our 100-day data set, finding a match for a particular 

image is literally like finding a “needle in a haystack”. On the other hand, the larger our 

data set is, the closer the match will be. Thus the robust metrics, which aren’t very 

discriminative, serve well when we are interested in finding matches that aren’t very 

close (a requirement for sparse data sets). This comes at the cost of never being able to 

find that really close match. Of course, an optimized image matching technique would 

use the (supposedly less computationally intensive) histogram metric to achieve a coarse 

matching, and then finish off with the more discriminative metrics to find the best match. 

There is a great deal of comprehensive research on image features for the task of image 

matching, which doesn’t need to be repeated. The conclusion so far seems to be that there 

is no one good set of features for all tasks. So we choose a generic metric that behaves 

well with respect to false alarms and instead rely on context for robustness to noise and 

generalization. 

 

Without target of attention

With target of attention

Walking over a bridge Shopping at BestBuy

Renting a video Working at the desk  

Figure 5-2: Two beneficial side-effect of the fish-eye lens. Objects receiving the wearer's visual 
attention cover more pixels. The wide-angle capture enables a complete but low resolution sampling 
of the periphery. 

 

Second, the warping of our images by the fish-eye lens has some beneficial side-effects 

for the pixel-based metric. Since more resolution is given to the center of the image, 

objects that are being attended to tend to overwhelm the rest of the clutter (see Figure 

5-2). This is qualitatively similar to how the human eye samples the light image falling 

on the retina. However, these foreground objects have to either be very close or very 

large for this to happen. Compare this to the case when there is no foreground object 
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(again see Figure 5-2). Now some part of the background is being magnified, but since it 

is not receiving the wearer’s attention, the center pixels will not persist as much as the 

pixels in the periphery. Schiele’s [44] work on segmenting out attentional objects is based 

on this property. Also, since the fish-eye lens captures the full periphery with low 

resolution, cluttering objects in the background (like this fellow pedestrian overtaking the 

wearer in Figure 5-3) will not affect many of the total peripheral pixels. 

 

Walking over a bridge Walking over a bridge  

Figure 5-3: Generally, objects that are not attended to will only cover a small number of pixels. This 
is useful for achieving robust estimation of peripheral conditions. 

The computational complexity of calculating the pixel-based metric is 

(3 ) 3(320)(240) 153,600O HW = = . This is unreasonable when we are processing days of 

video. Also not every pixel in the image has the same importance. For example there is 

the rim of the fish-eye lens visible in all images. These pixels don’t really change from 

one image to the next. However, a principle components analysis (PCA) will take care of 

both these problems (please see [38] and [52] for a similar usage of PCA). As part of 

PCA we compute the eigenvalues and eigenvectors (or eigenimages) of the image 

covariance matrix. Since our computers couldn’t hold a 153,600-by-153,600 element 

covariance matrix, we bilinearly subsampled the original 320-by-240 images to 32-by-24 

pixels, resulting in a 2304-by-2304 covariance matrix. The eigenimages are the optimal 

(in the least-squares sense) modes or basis vectors for reconstructing the images that were 

used in estimating the covariance matrix. The eigenimages of the front and rear views, 

ordered by their contribution to reconstruction, is given in Figure 5-4 and Figure 5-5. 

Notice that the mean image contains the rim of the lens and a monochrome gradient 

consistent with idea that light usually comes from above. As is typical, the mean was 

removed from each image before PCA analysis. The first rear view’s eigenimage is 

definitely the ghost of a chair back, which is a very common view to the rear. The third 

eigenimage of both the front and rear views could possible account for varying overhead 
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illumination. Eigenimages like rear view’s #18 and #19, and, front view’s #14 and #15 

could be representing motion blurred images. However, the rest of the eigenimages have 

a distinct resemblance to the 2-D Fourier basis, ordered in frequency, as is expected for 

images with stationary statistics [16]. An interesting (but very computationally intensive 

in the training phase) alternative is to find the basis via independent components analysis 

(ICA). Bell and Sejnowski [5] finds that the independent components of natural gray-

scale scenes (much like ours) are localized edge filters ordered by spatial location and 

orientation (i.e. oriented Gabor filters).  

 

The choice of how many eigenvectors to use was determined by a trade-off between 

reconstruction error and computational complexity incurred in the rest of the processing 

pipeline. We chose to project the front and rear views on to the subspace spanned by their 

top 100 eigenvectors. The reconstruction error (see Figure 5-6) in these subspaces is 85% 

(front) and 87% (rear). This results in a 200-dimensional feature vector being passed to 

the next stage of alignment. Figure 5-7 summarizes the feature extraction step for the 

alignment. 
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Mean 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

 

Figure 5-4: The mean and first 99 eigenvectors of the front view. 

Mean 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

 

Figure 5-5: The mean and first 99 eigenvectors of the rear view. 
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Figure 5-6: Percentage of the total variance captured by the top N eigenvectors (ordered by their 
eigenvalues). These curves show that these image space's are actually quite difficult to compress with 
just PCA. At least 400 eigenvector's are needed to reach  the 95th percentile. 
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Figure 5-7: The processing pipeline for the alignment feature.  The front and rear views are both 
subsampled and projected on to their respective top 100 eigenvectors. The result is concatenated into 
a 200-dimensional feature vector. 
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5.2 The Alignment Algorithm 

The goal of this section is to be able to take any pair of sequences from the I Sensed data 

set and match each time step in the “source” sequence with a time step in the 

“destination” sequence. In other words, as we move linearly through the “source” 

sequence each moment is associated with a similar moment in the “destination” 

sequence. We can then use the cost of the match to represent the dissimilarity of the 

“source” and “destination” sequences. At the same time we are labeling the “source” 

sequence with the contents of the “destination” sequence. This answers both questions of 

how similar/dissimilar are two subsequences and why are they similar/dissimilar at the 

same time. In this section our main piece of technical machinery is the Hidden Markov 

Model (HMM) to represent constraints of a match and the Viterbi algorithm to perform 

the actual matching. 

 

5.2.1 Local Time Constraints 

We would like to bias the matching towards smooth transitions in the “destination” 

sequence from one time step to the next.  This follows from the fact that if two points of 

time in someone’s life are close than they should be semantically similar with respect to 

location, activity, etc. regardless of the sensor reading. For example, say an individual 

wearing a camera on his chest is walking down a brightly lit hallway. As he walks, he 

suddenly lifts his arm to rub his eyes, thus completely occluding the camera. The main 

activity (walking down a hallway) hasn’t changed, nor has the location. However, 

without the smooth time constraint the times when the individual is rubbing his eyes 

would be matched with other dark moments. If we are lucky it is matched to other 

moments during which he is rubbing his eyes, but most likely it will simply match to 

another random time of some night making it seem as if the user has suddenly teleported 

in both space and time. In reality, this smoothness property of someone’s temporal state 

applies at all time-scales in some form or another from seconds (e.g. locations, activity) 

to even months (e.g. seasonal changes which do add a systematic bias to environmental 

sensor readings and possibly even the subject’s activities). So it makes sense to try to 
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limit the transitions in the “destination” sequence to be local in time. However there are 

two questions that need to be considered about this constraint. 

 

Are transitions backwards in time appropriate? In addressing this let’s consider the 

example of passing through a doorway. The typical sequence is: approaching the 

threshold  passing through it  moving away from the threshold. There is something 

about this sequence that won’t allow this from ever happening with its subsequences 

permuted (e.g. moving away from the threshold  passing through it  approaching the 

threshold). This is what we call a causal sequence1. For speech the analogous concept is 

the string of phonemes that make up a word. It is obvious then in this case that transitions 

backwards in time are inappropriate. In general, since our features preserve orientation 

(front view features are not mixed up with rear view features, such as via the histogram 

and Radon-like transforms), all sequences are locally causal except in a few rare cases, 

which are what we call reversible. We discuss these next. 

 

Front View

Rear View

Approaching entrance Approaching entrance Passing through door Leaving entrance Leaving entrance

Approaching entrance Approaching entrance Passing through door Leaving entrance Leaving entrance  

Figure 5-8: Entering a doorway is a causal sequence. 

 

Another type of sequence is the reversible (or non-causal) sequence. This type of 

sequence might occur in either direction (forward or reverse) but it will never be seen 

with its parts permuted. Under normal circumstances, most atomic sequences of video are 

                                                 
1 These causal sequences are related to the “event” concept of the author’s previous work, [8]. The event in 

this case was clustered from similar data (collected via wearable microphone and camera) using a left-right 

HMM. 
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also irreversible. This is because a camera is an oriented sensor moving through space. 

However, even with an oriented camera, sequences can be reversed in two scenarios. 

There is the situation when the person carrying the camera walks backwards. This never 

happens in the I Sensed data set. A slightly more common but still rare situation is when 

approaching an object looks very similar to leaving it. We can detect these situations with 

our system because it would imply that the front and rear views are the same. Take for 

example the act of walking down a long monotonous hallway as shown in Figure 5-9. 

Since the hallway receding in the distance looks the same in both directions, there are no 

local clues as to which direction in time is the forward direction. In general reversible 

sequences are quite rare and we would gain so much more from keeping the constraint 

that time moves forward rather than supporting matches between sequences and their 

time-reversed counterparts.  

 

Walking down a hallway Walking down a hallway

Front View Rear View

 

Figure 5-9: A long monotonous hallway is a reversible sequence. 

So far we have been ignoring the actual definition of what is local in time. How big is the 

largest transition in time that is still local? This complication arises from the fact that 

even for causal sequences, substitutions and deletions are still possible. If we were 

guaranteed that sequences in the data will re-occur at exactly the same rate with out any 

noise (for example, caused by occlusions) then we should only need to consider 

transitions of one time unit. However, obviously this is not going to be the case with our 

data. 

5.2.2 Global Time Constraints 

At the time-scales greater than a causal sequence, we can expect a longer sequence to be 

(almost) any permutation of causal subsequences. Hence large transitions in time should 

be allowed and in any direction in time.  
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5.2.3 The Alignment Hidden Markov Model 

We now encode the constraints discussed above in the form of an HMM. Essentially, we 

represent the “destination” sequence as an HMM with state transition probabilities that 

encode the global and local transition constraints. We will call this HMM the alignment 

HMM. The features of the “source” sequence are the output observations for each state. 

Let 1...t T=  represent the index into the “source” sequence. Let tx  represent the feature 

of the “source” sequence at time t .  Let 1...s N=  represent the index into the 

“destination” sequence, or equivalently, the s -th state of the alignment HMM. Let sy  

represent the feature of the “destination” sequence at time s . The goal of alignment can 

be stated as determining the state sequence, *{ }ts , that gives the best possible match to the 

input features, { }tx , from the “source” sequence. This framework is equivalent to 

dynamic time-warping (DTW), except the cost functions are represented probabilistically 

and thus more easily interpretable.  

 

We encode the local and global time constraints discussed above into the transition 

probabilities of the alignment HMM: 
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The first case assigns the probabilities for transitions of at most K  steps in the 

“destination” sequence. Its form is exponential to insure that the cost of a single transition 

that skips n  time steps is the same as the cost of n  transitions of one time step each. 

These transitions, which we will call the α -transitions, are the local transitions that try to 

maintain sequential continuity through momentary matching difficulties from minor 

insertions or deletions (e.g. those caused by rate differences, temporary occlusions, etc.). 

The second case assigns a constant probability, β , to global time transitions of any 

distance and in any direction. Generally, we would set β α<< . These transitions, which 

we will call the β -transitions, allow an alignment path to “teleport” instantly from any 

point in time to any other point in time all with the same associated cost. As mentioned 

before, this is useful when aligning sequences that consist of permuted subsequences, or 
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have long insertions and/or deletions. Since Z  is just a normalization constant, K , α  

and β  are the only free parameters. 
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Figure 5-10: The parameterized form of the alignment HMM's transition probabilities. 

 

The state emission probabilities are a function of similarity of the features in the “source” 

and “destination” sequences. We can define a Gaussian-like emission distribution for 

each state in the alignment HMM as follows: 

( , )
( | ) t st

D x y

t tp x s Ze=  

( )D g  is the distance function on the features (L1-norm in our case). Again, Z  is a 

normalization constant. If ( )D g  were the Mahalanobis distance than this distribution 

would be exactly Gaussian. However, we use the faster L1-norm appropriate to our pixel-

based features. Also since our features are already decorrelated as a result of the 

projection on an eigenbasis there is no need to include scaling by the inverse covariance 

matrix. 

 

Given values for the free parameters, K , α  and β , we can compute the optimal 

alignment of the “source” and “destination” sequences by the Viterbi algorithm. The 

similarity of the sequences is appropriately measured by the likelihood score calculated 
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during the course of the Viterbi algorithm. Recall that the computational complexity of 

Viterbi is 2( )O TN  in time and 2( )O TN N+  in space (we can reduce this by computing 

the distance and transitions probabilities on the fly but at a severe reduction in speed). 

Thus as the destination sequence gets longer the computational and storage loads increase 

quite rapidly. Typically, beam search is used to reduce the computational cost of Viterbi, 

however, this is not an option for us because the beam would prune all the alignments 

containing long jumps. This would prevent us from aligning sequences which contain 

similar causal subsequences but in differently permuted orders. If we keep all the 

parameters in memory for the fasted compute times, then the longest sequences we can 

align to are about 5000 steps long*. At a frame rate of 10Hz, this is about 8 minutes. So it 

is clear that if we are going to align sequences on the order of days or months, we have to 

use a multi-resolution approach. 

5.3 A Taxonomy of Alignments 

The source and destination sequences don’t have to contain the same sequence of features 

to yield alignments that are useful. In fact the most interesting cases from the point of 

view of this work are those pairs of sequences that are between the two extremes of being 

well aligned at every step in time and not being alignable anywhere. Differences might 

arise due to the speed at which the subject is going through the activities represented in 

the sequences. There are cases when the sequences share similar parts but the parts are 

out of order. In these cases, the alignment score (i.e. likelihood of the Viterbi path) will 

be slightly lower (compared to monotonically match-able sequences) since β -transitions 

will be necessary to align the two sequences. We will discuss these cases more later on 

because they provide the means for scene segmentation. 

 

Figure 5-11 shows two typical examples of alignment paths obtained when aligning 

sequences of quasi-similar content. The pair of sequences on the left are two examples of 

the subject walking from location A to location B. The sequences are highly similar thus 

only α -transitions are necessary to align them. This is what we will call an α -match. 

                                                 
* This is assuming a 1GHz Pentium IV with about 500MB of RAM. 
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However, in the source sequence the trip took longer than it did in the destination 

sequence. The pair of sequences on the right both contain the subject’s act of visiting 

three locations, A, B, and C. However, the order of these visits are different in each 

sequence. This is recognizable by presence of segments of continuous α -transitions 

punctuated occasionally by β -transitions.  This is what we will call a β -match. The β -

transitions occur when the user is transition from one scene (in this case locations) to the 

next. Providing a taxonomy of alignments enables users of a search engine based on this 

work to use some interesting queries. For example, the user might point to an example of 

himself returning home after work by foot, and then ask for α -matches that occur at a 

faster speed, thus identifying those times when he returned home on rollerblades. 
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Figure 5-11: Alignment paths for (a) an α -matchable pair of sequences, and (b) a β -matchable 

pair of sequences. 

 

5.4 Data-driven Scene Segmentation 

A key capability required for browsing, classification, and prediction, is the segmentation 

of the data into manageable coherent chunks, or scenes. Segmentation into scenes is 

useful for browsing because it helps depict to the user what the main parts of a temporal 

sequence are and makes it easy to show how they relate to each other (e.g. scene 

transition graph). Scene segmentation is useful for classification because it guides the 
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choice of labels and determines the intervals over which to integrate information from 

low-level features. Prediction becomes an insurmountable task with temporal sequences 

that have long and complicated dependencies between points in time, especially if those 

dependencies reach far back into the past. We will show that our method for scene 

segmentation is well-suited for compressing the past into a set of manageable chunks. In 

later chapters, we will show how this makes it possible for us to build prediction models 

that can use larger amounts of the past than previously possible. 

 

Most of the difficulty researchers have faced while tackling this problem is the lack of a 

suitable definition of what a “scene” actually is. Many researchers base their algorithms 

for scene change detection on shot boundary detection [30]. Shot boundaries (the 

switching of camera views or edit points) are artificial artifacts introduced by the video’s 

editor and algorithms for detecting them will usually fail on contiguous unedited video 

captured by a single camera.  Certainly, this is one way to avoid having to define what a 

scene is, since the editor has already define them. On the other hand, some researchers 

define the scene as being a interval of time during which a pre-selected set of features are 

statistically constant, such as motion [47] or color [48]. Scenes changes are detected by 

building detectors on top of a time-derivative representation of these features. The main 

problems with this class of approach are that they only use local information (time-

derivatives of the time-localized features) and it is very difficult to adapt to gradual 

changes in the feature statistics (non-stationarity). Another class of methods, model-based 

segmentation (train a model, use it to label the data), requires that you are able to define 

exactly what you mean by a scene, via feature-selection, rules or by labeling training 

data. For example, we might decide to equate location to scene, label a portion of data as 

such, train location models, and then use them to segment the rest of the data. These 

methods of course only work when your training set adequately covers the space of 

possible test inputs, a situation that change detection methods are more robust to. 

 

As clustering methods have become more popular for video indexing, researchers are 

agreeing that it is better to let the data define what a scene is rather than choosing 

beforehand the conditions for a scene. Zhong et. al. [57] has found that clustering features 
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extracted globally from shorter video segments (gotten via some other method) can 

alleviate some of these problems, but using time-averaged features to represent longer 

and longer segments of video will unnecessarily discard vital discriminative information. 

In our earlier experiments, we discussed a way around this by summarizing feature 

segments with HMMs, which encode feature dynamics, rather than averaging them out. 

Cluster-based segmentation is attractive because it allows the data to determine the 

scenes by how the data “clumps” in feature space. However, as always with clustering 

methods, the work is hidden in the similarity measure. For example, we can't find scenes 

in video just by clustering frame-based features. Most scenes are usually not a set of 

similar images, which is what clusters in an image space would give. In Figure 5-12, we 

give an example of what this typically looks like when clustering with frame-based 

features. Most scenes turn out to exhibit complex modes in image-feature space. 

 

Color Histogram Distance Matrix  

Figure 5-12: Multi-dimensional scaling (Sammon mapping) of a color histogram feature on the rear 
view images taken from a single day. The images nicely cluster based on their visual similarity, but 
the temporal continuity (red line) required by scene segmentation is not preserved. 
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A more accurate description of a scene is a path through the image space. (We can 

replace the word image with feature of course.) The hierarchy of HMMs (see Earlier 

Experiments) was one way to tackle this problem by clustering path dynamics instead of 

individual feature points. Hence, the clusters that were discovered were able to support 

scenes with highly variable image feature statistics. However, the problem with the 

clustering is that clusters will only form around high-density portions of the space. Even 

adding more centroids will tend to just divide up the densely clumped portions of the 

cluster space. In other words, there has to be a lot of supporting examples to form a 

cluster and hence scenes tend to be defined by the norm. We have been finding that with 

very long inhomogeneous data like the I Sensed data, this can be a very debilitating 

effect. The longer scenes completely overwhelm the shorter scenes. In order to achieve a 

clustering that adequately covers the observed set of path dynamics, we need to match the 

order of centroids with the number of scenes. So instead of estimating prototypical 

examples, why not just use the sequences themselves? 

 

We now propose an alignment-based segmentation. Before giving the algorithm let’s map 

it out qualitatively. Suppose we wish to find the scenes in a given sequence. Suppose also 

that our knowledge consists only of a huge bag of previously seen sequences. First we 

proceed by aligning our given sequence with our entire bag of examples, so that every 

moment in the given sequence is matched to a moment in a past example. Let’s assume 

there is a point where our current sequence is aligning nicely with a particular past 

sequence (indicated by α -transitions). So we keep traveling down our current sequence, 

watching the alignment path as we go. Eventually, during the alignment the past 

sequence that we have been aligning to will diverge and we will have to make a β -

transition to another remote place in our bag of past examples. Since the alignment is the 

best possible, this means there are no other past examples that better align to our 

sequence for a longer period of time (there might be shorter ones). We have reached a 

point in our sequence beyond which all of our past examples don’t extend. This is a 

natural place to deduce a scene break.  

 



 82 

The reader might ask: what about all the stuff that was grouped into one scene just 

because we found another matched sequenced in the past? The basic principle at work 

here is a minimum description length (MDL) one, since we always choose longer scenes 

if there is evidence that a similar lengthy scene has occurred before. Since our alignment 

algorithm tries to minimize the number of β -transitions it can be thought of as 

computing the MDL labeling of the given sequence using the past examples as possible 

labels.  

 

In essence, to support a scene in this framework, the system merely needs to find at least 

one match somewhere else in the data. The longer the match, the longer the scene, 

regardless of what happens inside. This way scenes are minimalistically defined by what 

sequences are repeated in the data and are independent of the nature of the scene.  

 

We know give the full details of the segmentation algorithm.  

 

1. Alignment: Let ( )1,..., Tx x x=  be the source sequence in which we wish to find scene 

breaks. Let ( ) ( ){ }1

1 1 1
1 1,..., ,..., ,...,

L

L L L
N Ny y y y y yϒ = = =  be the set of L  destination 

sequences. To simultaneously align x  with all of the sequences in ϒ  we use an 

alignment HMM with a state-space that spans all of the destination sequences and thus 

has 
L

i
i

N N=∑  states. We also need to slightly generalize the transition probabilities to 

this case so that the α -transitions are only between intra-sequence states, 

1

1 1
1

, 0  and , same sequence
( | )

, otherwise

t ts s
t t t t

seg t t

Z s s K s s
p s s

Z

α
β

−−
− −

−

 ≤ − ≤ ∈= 


. 

Thus, the N N×  transition matrix will have a block diagonal structure. Distances need to 

be computed between all pairs of elements in x  and ϒ  for a T N×  distance matrix. 

Computing the Viterbi path of this HMM on the source sequence will yield an alignment 

path, ( )* * *
1 ,..., Ts s s=  * 1...ts N∈ , that best matches moments in x  with any of the 

moments in sequences in ϒ . 
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2. Scene Change Score: A scene break occurs when there is a β -transition. However, not 

all β -transitions are equal. So we score each moment in the alignment path as 

* *
1 1 1

1 1

0  and , same sequence

/ 0  and , different sequences

0 otherwise

t t t t t t

t t t t t

s s s s K s s

c N L s s K s s

− − −

− −

 − ≤ − ≤ ∈
= ≤ − ≤ ∈



. 

This allows longer jumps to have larger scores but assigns a constant score, /N L  (the 

average sequence length), to jumps between sequences in ϒ . Jumps less than size K  (i.e. 

α -transitions) receive a minimal score of zero. 

 

3. Hierarchy of Scenes: Finally if we sort the values of { }tc  in descending order and 

successively split the sequence x  at the associated times, a hierarchy of scenes is 

generated ordered by level-of-detail. Another way to describe the construction, is as 

sweeping a threshold from top to bottom down a graph of tc , successively splitting the x  

sequence as the threshold encounters peaks. 

 

Figure 5-13 shows an example of scene segmentation when ϒ  contains only one 

sequence that is locally similar to x  but globally different. This way when aligned they 

yield a permuted path (see section 5.3). In order to achieve the best segmentation results 

it is desirable for the destination sequence to be a permuted version of the source 

sequence. Otherwise if there is no local similarity then this technique simplifies to pair-

wise image clustering with temporal-smoothing. Thus it is important to include as much 

material in the set of destination sequences, ϒ , as possible so as to increase the 

probability of find a good local match to each moment in the source sequence. However, 

computational requirements of the alignment will increase rapidly with the size of ϒ . In 

the next section we show methods for alignment at coarser resolutions that will allow us 

to include more in ϒ . 
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Figure 5-13: The algorithmic pipeline for segmenting a source sequence according to the contents of 
a destination sequence. Starting from top and proceeding to the bottom, (1) Alignment of the source 
sequence to the destination sequence, (2) Scoring each time step for the possibility of a scene change 
from the alignment path, (3) a Hierarchy of Scenes can be generated by sweeping a threshold across 
the scene change score. 
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5.5 Multi-scale Alignment 

Alignment at the finest level of detail would consist of aligning each frame of a pair of 

sequences at the original recorded rate. However, since the computational cost for 

aligning a pair of sequences grows prohibitively with the length of the destination 

sequence, we need to adapt a multi-resolution method in order to align sequences on the 

order of days. In this section we show alignment at three different time-scales, fine 

(frame-rate), medium (run-length encoded signal), and coarse (5 minute chunks) 

alignment. Given that the similarities are pre-computed and stored in memory the typical 

lengths of time that we can align at each scale of detail in 5 minutes are given in Table 

5-1. For longer times, recall that the alignment procedure is linear in the length of the 

source sequence but squared in the length of the destination sequence. 

 

Alignment Scale of Detail Sequence Length 

Fine 6-7 minutes 

Medium 1 day 

Coarse approx. 30 days 

Table 5-1: Alignments lengths at the three levels of detail that a 1GHz computer with about 500MB 
of memory can compute in 5 minutes (given a pre-computed similarity matrix). One day is on 
average 8 hours of data for the I Sensed data set. 

 

5.5.1 Fine-scale Alignment 

With a fine-scale alignment on portions of the I Sensed data, it is possible to do very 

detailed comparison of two activity sequences. For example, it is possible to take two 

examples of the subject walking to the store and, after aligning at frame-rate, compare the 

matched images for differences, missing objects, lighting changes, and so on. Figure 5-14 

gives an example of the subject walking entering a famous building on campus and 

walking down a well-known hallway. Notice that the alignment between the two 

sequences is exact down to what doorway and bulletin board he is passing by. In some 

frames you can see the presence of other people in the hallway (e.g. frame 14) that are 

not presence on May 10 but are on May 4.  

 



 86 

As mentioned before, it is too computationally intensive to do this kind of fine-scale 

alignment between every pair of moments in the I Sensed data. Sequences should be 

segmented into manageable chunks and evaluated for overall pair-wise similarity before 

they are chosen as candidates for fine-scale alignment.  
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Figure 5-14: Fine-scale alignment of two similar scenes that happened on separate days: entering a 
building and walking down a hallway.  
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5.5.2 Run-length Encoding 

A useful tool for time-compressing the feature sequences is run-length encoding. As you 

might intuitively expect, video of an individual’s life is full of long sequences where not 

very much is happening, punctuated by bursts of activity. This makes it an ideal 

candidate for run-length encoding (RLE). The procedure for RLE on video is as follows: 

 

1. Choose a change threshold, τ  and initialize *, 0t t = . 

2. If 
*

max

( , )t t
D x x

D
τ> then add the current image, tx , to the compressed sequence and 

set *t t= . ( maxD = the largest distance possible between a pair of images) 

3. Set 1t t= +  and repeat step 2. 

 

The resulting time-compressed sequence is irregularly subsampled where the sampling 

rate is proportional to the rate of change in the video. In Figure 5-15, we give an 

examples of the RLE compression on a minute of video (in this case the subject is 

shopping at a convenience store so there is relatively a lot of activity) at two different 

settings of the change threshold. There are about 600 frames in the original sequence, 

which at 5% RLE compression is reduced to 189 frames and at 15% RLE compression is 

reduced to 12 frames. A 5% change threshold means that if less than 5% of the pixels 

change between the last image in the compressed sequenced and the current image under 

consideration then it will not be added to the compressed sequence. An entire day can be 

RLE’ed at a 15% change threshold from the original ~150,000 images to a manageable 

3,000-5,000 images. The fact that such small threshold will nevertheless yield large 

compression rates is very fortunate. As we can see in Figure 5-15 the original video, even 

at such a short time-scale (one minute) and active period (shopping), contains long 

sequences of very little change as the user waits at the deli or browses through the 

beverages. At 5% the some of the long sequences are still exist due to small amounts of 

motion that is usually present when a camera is mounted on a person. However, at 15% 

no more repetitions exist but pretty all of the major views are included.  
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Figure 5-15: Different levels of run length encoding for a minute of video. The gray lines denote the actual sample rate of the video. 
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5.5.3 Medium-scale Alignment 

The RLE compression step at a 15% change threshold allows us to align a pair of days in 

about 5 minutes. The average frame rate of RLE-15% compressed video in the I Sensed 

data set is 0.1 Hz or 1 frame every 10 seconds, but the instantaneous frame rate is highly 

variable, from 10 Hz to 0.001Hz. 

 

In Figure 5-16 we see 10 example paths gotten from aligning Weds. May 9, 2001 to 10 

randomly chosen days after RLE-15% compression. Figure 5-17 and Figure 5-18 show 

video (highly subsampled for printing) of the source sequence (May 9) to the most 

similar (June 15) and least similar (May 10) days of the ten randomly chosen days in 

Figure 5-16, respectively. The alignment with a similar days is much more successful in 

finding moments in the destination sequence (June 15) that match the source sequence, 

but even the dissimilar day matches the source at a few moments. Particularly notice that 

in Figure 5-17 it looks like the alignment consistently matches outdoor moments in the 

source sequence with outdoor moments in the destinations sequence, meetings with 

meetings (even if they are in different rooms), office with office, and so on. The 

alignment with the dissimilar day is much less successful because it has little appropriate 

material to match with. This suggests that the alignment score could be used to find 

similar days. Figure 5-20 shows the alignment score for May 9th aligned with each of the 

days in the randomly chosen set. This score was used to choose the most similar and 

dissimilar days that were given in Figure 5-17 and Figure 5-18.  

 

In order to evaluate the use of the alignment score as a measure of similarity between 

days, we chose to compare the rate at which locations in the source and destination 

sequences were correctly matched by the alignment. We manually labeled the situation 

class of every 5 minute interval of May 9th and the 10 randomly chosen days. The 

situation labels and the categories that we chose to group them into are given in the next 

chapter on situation classification. The resulting labeling can be seen in Figure 5-19. 

Visual inspection of the situation labeling without alignment doesn’t clearly show why a 

pair of days would be similar or not. However, if we align the pair of days and then 
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compare the situations that were matched then we can begin to see how the days are 

dissimilar or similar. In Figure 5-21 we show this aligned comparison of situation. Notice 

that the similar day succeeds in matching a number of outside and inside situations. 

Contrast this to the dissimilar day where the only matches were the ubiquitous “at work” 

situation and the “office” (sometimes). 
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Figure 5-16: Examples of alignment paths at the medium level of detail. The source sequence is 
always May 9, 2001 and the destination sequences are 10 randomly chosen days. Each plot maps the 
source sequence to the destination sequence. The long hops are β -transitions. 
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Figure 5-17: An alignment of Wednesday May 9 to a similar day (Friday June 15) at the medium 
level of detail (RLE-15%). The source and destination sequences have about 3000 frames, this figure 
only shows a few. Also notice the non-uniform sampling due to RLE. 
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Figure 5-18: An alignment of Wednesday May 9 to a dissimilar day (Thursday May 10) at the 
medium level of detail (RLE-15%). The source and destination sequences have about 3000 frames, 
this figure only shows a few. Also notice the non-uniform sampling due to RLE. 
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Figure 5-19: May 9th and the 10 randomly chosen days are given here with their situations (y-axis) 
hand-labeled every 5 minutes (x-axis). Each location category is represented by a horizontal track 
with dark areas indicating when a situations was occurring. There is overlap because the situation 
categories are not exclusive and more than one situation can occur in a 5 minute segment. 
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Figure 5-20: The alignment scores (normalized log likelihood) of May 9th to 10 randomly chosen 
days. 
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Figure 5-21: Comparison of situations (hand-labeled) for May 9 to the most similar and dissimilar 
days after alignment.  The red bar is the location of the subject on May 9th. The blue bar is the 
location of the subject on the destination day at the matched time. The green bar denotes correct 
matching of the situation by the alignment. Notice that the situation categories are not exclusive. See 
Figure 5-19 for the situation labeling of the non-aligned versions. 
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5.5.4 Coarse-scale Alignment 

When the goal of the alignment is provide either links of association to common 

moments in the past or derive good scene segmentations, then it is necessary to include as 

many days in the alignment HMM as possible. To this end we introduce our coarsest 

scale of alignment which allows us to align a given day against 30 other days. The key 

component of the coarse alignment algorithm is to use the alignment scores of a medium-

scale alignment on 5 minute chunks as the input into the coarse-scale alignment. The 

outline of the coarse-scale is as follows: 

 

1. For every pair of 25 RLE-15% frames in { 1 , 30 }x day days= ϒ =  we align and 

store the alignment score in a TxN% % similarity matrix. We call these 25 frame 

sequences the coarse chunks. They vary in absolute time duration from 10 secs to 

10 minutes, but average 5 minutes. 

2. Then we align x  against ϒ  using the inverse similarity matrix as the distance 

function ( )D g  and the same transition function, 1( | )seg t tp s s − , that was defined in 

section 5.4 (Data-driven Scene Segmentation). 

 

We chose a set of 32 days* to completely align with each other (i.e. 1 day vs. 31 days for 

each day). The computation of the alignment scores for all days in step 1 of the coarse-

scale alignment was the most expensive, taking about 1 night to compute on a 1GHz 

computer. However, the result is a 3500-by-3500 similarity matrix that can aligned in 

under 10 minutes. The entire similarity matrix (stacked together to show the similarity 

between every pair of 5-minute intervals in the 32 days) is shown in Figure 5-22 with the 

alignment overlaid in yellow. There are no alignment matches inside the white areas 

along the diagonal because the day being aligned was itself naturally left out of the 

alignment. This forces the alignment procedure to find matches in other days. 

 

 

                                                 
* Actually 34 sequences since two of the days were split into two runs since we needed to briefly shut the 

data collection wearable off for maintenance. 
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The coarse-level alignment can be used for a number of tasks: 

• Deriving an associative network between moments in a large number of days 

• Segmenting scenes for browsing 

• Clustering similar days based on matching of similar moments rather than a 

global aggregrate score. 

• Building prediction models that model dependencies over days 

• Classifying situations 

In the upcoming chapters we evaluate a few of these. 

5.6 Summary 

Defining the similarity between tracks of video requires that you first identify the pairs 

images that should be compared. We have solved this correspondence problem with a 

straightforward alignment technique. It turned out that the alignment also gave us an 

excellent method for scene segmentation because the alignment identified the points in 

the video where keeping temporal continuity with an example in the past was difficult. 

Hence there is a good chance (which increases with more data) that the video had reached 

a branching point in the scene transition graph, indicating a scene transition. Finally, we 

showed how to apply our alignment methods on a wide-range of time-scales. 



 99 

1  Wed 05/09
2  Thu 05/10
3  Thu 05/10
4  Fri 05/11
5  Sat 05/12
6  Sun 05/13
7  Mon 05/14
8  Tue 05/15
9  Wed 05/16
10  Thu 05/17
11  Fri 05/18
12  Sat 05/19
13  Sun 05/20
14  Mon 05/21
15  Tue 05/22
16  Wed 05/23
17  Sun 05/27
18  Mon 05/28
19  Tue 05/29
20  Wed 05/30
21  Thu 05/31
22  Thu 06/07
23  Fri 06/08
24  Sat 06/09
25  Sun 06/10
26  Mon 06/11
27  Tue 06/12
28  Wed 06/13
29  Fri 06/15
30  Fri 06/15
31  Sat 06/16
32  Mon 06/18
33  Tue 06/19
34  Wed 06/20

Simultaneous Alignment of 30 Days

1 23 4 5 6 7 8 9 10 11 12 13 14 15 16 1718 19 20 21 22 23 24 25 26 27 282930 31 3233 34

1
23

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18
19

20

21

22

23

24

25

26

27

28
29
30

31

32
33

34

- Match

Days:

highlow

Similarity

source day

de
st

in
at

io
n 

da
y

31

30

 

Figure 5-22: The result of coarse-scale alignment on 30 days. Each source day is aligned with the remaining days leaving itself out of the alignment 
(shown in white). The matches are depicted in yellow which when shown magnified (inset) reveals that they are paths. The backdrop depicts the 
similarity value



 100 

Chapter 6: Situation Classification 

“Where are you and what are you doing?” are two of the most basic facts about your 

state. Many of your basic decisions, activities, and the events that happen to you are 

dependent on your location and the state of your location (e.g. turning down a hallway, 

meeting someone, turning on the light, eating at a restaurant). We believe that it is not 

location alone or activity alone that determines your context or influences your next 

action, but rather the interaction between location and activity. It doesn’t make sense to 

model location irrespective of activity and vice versa. The two concepts are so highly 

correlated (certain locations are for certain activities, certain activities are for certain 

locations) that from a statistical point of view they must be modeled together. This 

coupling of location and activity is represented together in the concept of a situation.  

 

 Presumably at this moment you are sitting somewhere, perhaps your office or the library, 

reading this document. Let’s assume that reading is one of the many activities that you 

conduct in your office. Arguably, reading only makes up a small portion of what could be 

called your office situation. Your office situation might also include speaking with 

colleagues, talking on the phone or typing at your computer. The office situation seems to 

be delineated by the physical boundaries of your office walls. However, it doesn’t make 

sense to define all situations by the location they happen in. For example, the situation of 

“eating out” could and usually does happen across many locations (the local 

neighborhood café, the posh Italian restaurant in downtown, etc.).  

 

In the upcoming sections we show how we can use the alignment similarity measure 

(given in Chapter 5:) to classify situations in the I Sensed data set. We give results for 

situation classification when using only short-term context (one RLE chunk vs. one RLE 

chunk alignment) and when using long-term context (one day vs. 30 day alignment). 

Naturally there are situations when one type of context is more appropriate than the other. 
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In the last two sections of this chapter we give a method for combining the two types of 

context that improves classification accuracy over using either type of context alone. 

6.1 The Situations 

We labeled 20 days of the days used in the 30 day alignment (of section 5.5.4) for 

location every 5 minutes for a total of ~2000 labeled sections. If more than one location 

occurred in a given 5 minutes then that 5 minutes received multiple labels. To build our 

situations we grouped 58 locations by common activities. Table 6-1 gives the resulting 19 

situations after the grouping. Naturally some of the locations contain other locations (e.g. 

the subject is always at the Media Lab if he is in his office). 

 

Note: We will be giving the total accuracies in two flavors. Since the situations occur 

with vary different frequencies we need both. The accuracy (in the plots) is simply the 

number of correctly classified situations over the total number of situations seen in the 

test set. In the text we will also quote the average accuracy which is the mean accuracy 

for all 19 situations. This accuracy is immune to the effects of varying situation 

frequency. 

6.2 Context-free Classification 

In 5.5.4 we calculated the similarity between every pair of medium-level chunks (25 

frames of RLE at 15%) in 30 days by aligning the frames and noting the log likelihood of 

the alignment. Our hypothesis is if different chunks are of the same situation (say both 

are from the street situation) then their alignments should give high scores relative to 

other chunks from different situations. Our earlier experiments had hinted at this 

possibility. So for any given chunk another chunk that has a high alignment score relative 

to it should be of the same situation class.  

 

To test this hypothesis we took every chunk in the labeled 20 days and order the other 

chunks by their alignment score. The chunk was correctly classified if the chunk with the 

highest alignment score was from the same situation class and incorrectly classified if 

not. This is also the rank-1 accuracy. The rank-2 accuracy is when we consider a chunk 
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correctly classified if at least one correct match is in the top 2 scoring chunks. This is a 

completely unsupervised classifier since no knowledge of the labels was used to generate 

the similarity measure. Since the score is only dependent on the alignment of a pair of 

medium-level chunks (approx 1-5 minutes in duration), the classification is only affected 

by short-term memory (or context). 

 

Figure 6-1 gives the results for matching situations of chunks with only short-term 

memory over 20 days of data (or about 2000 chunks). The chance recognition rate is the 

probability of a correct match if we just choose another chunk at random. Recognition 

rates vary quite a bit between class but all are many times larger than the chance 

recognition rate, indicating that the alignment score is a decent measure for similarity of 

situation. In fact the overall score for all situations is 89.4% (rank-1) and 95.0% (rank-2) 

over time. The average accuracy over the 19 situations is 82.4% (rank-1). 
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Figure 6-1: Rank-1 and rank-2 situation matching accuracy for the medium-level chunks via their 
alignment score. The figure gives the per situation accuracy and the total accuracy along with the 
chance recognition rates. 
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Situations Locations (grouped by activity) 

home home 

neighborhood Beacon St., Massachusetts Ave. (Boston-side) 

bridge Harvard Bridge, Longfellow Bridge 

street Kendall Square, Boston Downtown, Main St., Memorial Dr.,  

Cambridgeside, 77 Massachusetts Ave. 

hallway Infinite Corridor 

campus inside & outside of bldg. 56, bldg. 66, bldg. 7, bldg. 10  

at work Media Lab  

(contains any of the other locations that are at work) 

elevator elevator (anywhere) 

stairs stairs (anywhere) 

office office (at Media Lab) 

lab Dismod, Garden, Interactive Cinema,  

copiers, CASR, Advisor’s office 

meeting Facilitator Room, Black Couch Area, Bartos Auditorium 

kitchen kitchen (anywhere) 

bathroom bathroom (anywhere) 

gym DuPont Athletic Center 

vehicle taxi, bus, subway 

store Tower Records, Realtor, Graduate Housing Office,  

Medical Center, Color-Kinetics Inc.,  

The Food Trucks, Student Center, ATM 

restaurant Ginza, Cheesecake Factory, Kendall Foodcourt,  

Toscanini’s, Bertuccis, AllAsia, Whitehead Cafeteria,  

Walker Cafeteria, Bio-Cafe, Penang 

class Japanese 

Table 6-1: The situations and the actual location labels that they represent. 
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6.3 Far vs. Near Matches 

We examined the errors that the short-term classifier makes in the experiment above. 

When the ranking of examples by the alignment score is unable to find a similar situation 

in the same day as the test chunk and is forced to choose one in another day. There is 

nothing wrong with choosing a match in a different day, but it turns out that the short-

term classifier is not good at matching chunks that are far apart in time. Since only 57.9% 

of the closest matches in the experiment above are matches to other chunks within the 

same day of the test chunk, this weakness is expected to affect overall performance quite 

a bit. To quantify this intuition, we decided to compare matching accuracies for when we 

force the match to be in the same day (near) and in another day (far). Figure 6-2 gives the 

resulting recognition scores. Notice that the near accuracy (95.1%) is quite high 

compared to the far accuracy (72.2%). The average far accuracy over the 19 situations is 

56.4% and the average near accuracy is 87.4%. This validates our intuition that near 

matches are easier for the context-free classifier than the far matches.  

 

If we examine these far errors more closely we see that many of the mismatched chunks 

have high scores and are visually similar but don’t make sense given the flow of events 

around the test chunk. This is a hint that context can help us correctly classify these “far” 

matches. 

6.4 Classification with Long-term Context 

Fortunately, we have an ideal tool for bringing long-term context to the classification 

problem – alignment. Recall in 5.5.4 we were able to align each day against 30 other days 

at the coarse level of detail (chunks). We can view this alignment in a different light. By 

aligning we matched chunks in a given day to chunks in the other 30 days. However, the 

each chunk-to-chunk match must contribute to a good alignment of the entire day to the 

other 30 days and not just be a good short-term match. Hence the coarse level alignment 

will smooth out matches that are good in isolation but don’t follow the usual progression 

of events seen in the other days that we are trying to align with.  



 105 

 

The long-term classifier is then constructed by matching every test chunk with the chunk 

that was aligned to it during the coarse daylong alignment. Figure 6-3 gives the results of 

the classification with context. The overall rank-1 accuracy* is 94.4% and the rank-2 

accuracy is 96.6%. The average rank-1 accuracy is only 73.4% due to a few low 

performing classes (stairs, restaurant, bridge). This is an improvement over the context-

free classifier by about 7 percentage points. However, recall that the context-free 

classifier is able to choose from the (easier) near matches while this classifier (by design) 

can only align chunks to chunks in different days. Hence the matches are all far matches. 

This means we should be comparing our accuracy to the context-free classifier’s far 

performance of 72.2%. This is 24 percentage points below the contextualized classifier’s 

performance showing that context indeed helps a great deal when we are forced to make 

matches between separate days. 

                                                 
* Since the coarse alignment was done over a larger set than what was labeled, some labeled chunks are 

matched to unlabeled examples. We threw these out of the tabulation, resulting in the vehicle situation 

having no pairs of matches to count. 
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Figure 6-2: The performance of the short-term classifier when we force the match to be in the same 
day (near) and in another day (far). 
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Figure 6-3: The performance of the contextualized classifier at matching situations. Rank-1 is the 
accuracy when only considering the actual chunk aligned to the test chunk. Rank-2 is when a correct 
match exists within one time step in either direction along the alignment path. The vehicle situation 
had no labeled pairs of matches to count. 
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misclassified example

context-free match

match with context

Eating dinner at a campus dining hall with a friend...

Getting ready in the morning at home...

Eating dinner at a campus dining hall...

 

Figure 6-4: This restaurant situation was misclassified by the context-free classifier but correctly matched with context. The example was misclassified 
due to the protracted occlusion of the camera by another person’s head (last 7 frames) and matched to a highly varying sequence which has a high 
likelihood of producing decent alignments with many types of situations. 
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6.5 Hybrid Classifier 

Finally, we would like to combine our ability to find good matches within the same day 

with our ability to find matches between separate days. To do this we can use the 

following simple rule: 

 

If a given test chunk’s context-free match is in a separate day then classify this 

chunk with the contextualized classifier, otherwise it is a near match and thus we 

should use the context-free match. 

 

A situation classifier based on this rule will take advantage of the strengths of context-

free and contextualized classification. Refer to Figure 6-5 for the per situation 

classification accuracies of this hybrid classifier. The overall accuracy is now 97.0% over 

20 days of situations. The average accuracy is 85.5%. 
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Figure 6-5: Performance of the hybrid classifier at situation classification. This classifier uses 
context-free classification on the near matches and contextualized classification on the far matches
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Chapter 7: Life’s Perplexity 

“When you come to a fork in the road, take it.” –Yogi Berra 

 

At each moment in our lives, not every possible action is available for us to take. One 

cannot teleport in both time and space from breakfast at home to dinner at a restaurant in 

the blink of an eye. We can expect some moments to present numerous paths that 

smoothly diverge into radically future situations from the present situation while other 

moments may provide few alternatives. Since there is a natural tendency for us to limit 

the amount of variability in our life, we might choose to habitually ignore certain 

alternative paths during the course of our day-to-day activities. There are an infinite 

number of possible routes to take from home to work, but out of habit and practicality we 

usually settle on a very small number like two or three. The concept we are referring to, 

which is concerned about the number of paths of action emerging from a given scene, is 

called the perplexity of a scene*.  

 

In the previous chapter we developed a similarity measure that allows us to compare 

moments and intervals of video from an individual’s life. By doing so we constructed an 

abstract space, one for each time-scale of the application of the similarity measure, in 

which the streams of sensor data are winding paths. Let’s call this space a situation space 

since we showed in Chapter 5: that two similar intervals of video (and hence near to each 

other) are very likely to be of similar situations. Since no two moments in someone’s life 

are exactly the same, the winding path never intersects itself unless we start to discretize 

or cluster the situation space. Once this is done, we can measure the perplexity (i.e. the 

                                                 
* We use the word scene to generically refer to any interval of experiences in a person’s 

life.  
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number of forks in the road) at each point in the sensor stream. Places in the sensor 

stream that display a high fan-out can be thought of as decision points. In this chapter, we 

propose a method for finding these decision points and then go on to measure their 

perplexity and the consistency of the choices taken at those points (prediction accuracy).  
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Figure 7-1: By cutting up (e.g. clustering) a situation space (left) into discrete regions, we can 
tabulate the transitions that occur between regions over the course of an individual’s day (right). 

Our approach is to first segment the sensor stream based on where we believe the 

decision points are. This process is based on the scene segmentation algorithm given in 

section 5.4. Then we assign discrete symbols to the sequences between the decision 

points by clustering with the similarity measure. After collapsing all runs of a symbol to a 

single symbol we can estimate the predictive accuracy of a 1st order Markov model and 

measure the perplexity of each symbol (see Figure 7-1). We conclude the chapter by 

interpreting these results. 

7.1 Clustering the situation space 

Previously in section 5.4 we described a scene segmentation algorithm that essentially 

determined scene boundaries by where β -transitions occurred. Since these are the places 

where a given sequence diverges from the best-aligned past/future example, we can 

imagine that the individual has made a decision that is not typical (i.e. different from the 

past or future). In the following experiments we use the segmentation (842 scenes over 

30 days) provided by the alignment of 1 day against 29 other days (section 5.5.4). Thus in 

this case, a β -transition signifies a point in one day where the experiences of the 

individual diverge from what was observed in all the other 29 days.  
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...
842 scenes  

Figure 7-2: The hierarchical cluster tree on the 842 scenes (arranged horizontally) segmented from 
30 days.  Clusters are merged successively to form compact larger clusters. 

 

To assign symbols with each of these, we constructed a merge tree by successively 

merging the most similar pair of scenes in an agglomerative bottom-up manner. 

Similarity between clusters was calculated as the similarity of the least similar pair of 

examples in the clusters (e.g. this is the ‘complete link’ metric which favors compact 

clusters, as opposed to the ‘single link’ metric which favors long chains). The result is a 

binary cluster tree, which we show, fully depicted down to 200 clusters in Figure 7-2. To 

obtain an N-clustering of the 842 scenes, we simply stop merging when we reach N 

clusters. 

7.2 Choosing the number of situations 

We determine the number of symbols by how predictive the symbols are. The naïve 

approach is to plot the prediction accuracy versus the number of clusters. We show this 

for the cluster tree on the 842 scenes from 5 to 200 clusters in Figure 7-3. The predictive 

1st order Markov model is, 

1arg max ( | )n n n
pred t t

i

x p x i x −= =  
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where (1,..., )n
tx n∈  is the symbol of the n-cluster set at time, t . The probability 

distribution p  is estimated empirically from co-occurrence counts on a training set after 

removing symbol repetitions.  Accuracy is calculated by averaging the results over a 30-

way cross-validation (leave 1 day out for test, train on the remaining 29 days). 
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Figure 7-3: A plot of how 1st order Markov prediction accuracy varies with the number of scene 
clusters. 

 

Naturally, as the number of symbols increases, the probability of chance decreases, 

making the prediction task successively more difficult. Hence there is an unfair bias 

towards fewer symbols. So a straightforward use of prediction accuracy to choose the 

number of symbols is not appropriate. Instead we would like to measure how much 

information about the future, n
tx , is extractable by a 1st order Markov model from the 

past, 1
n
tx − . The standard measure for this is mutual information [10]. Mutual information 
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between two variables yields the number of bits of information that one variable has 

about the other: 

1
1 1

1 1 1

( , )
( ; ) ( , ) log

( ) ( )

n nn n
n n n n t t
t t t t n n

i j t t

p x i x j
I x x p x i x j

p x i p x j
−

− −
= = −

= =
= = =

= =∑∑  

In this case, 1( , )n n
t tp x x −  is again estimated from co-occurrence accounts over a training 

set after removing symbol repetitions. Finally, in Figure 7-4 we plot the number of bits of 

mutual information per symbol, 

1( ; )n n
t t

n

I x x
B

n
−=  

versus the number of symbols. We notice that there are two opposing forces at work in 

this graph. When using too few symbols (<30), information about the underlying sensor 

stream and hence the actual scene is lost and severe perceptual aliasing blurs out the 

predictive cues from the past about the future. When using too many symbols (>30), less 

information is lost but the model is less able to generalize from its training examples. The 

result is that in between these two extremes (at around 30 symbols) there is an empirical 

optimum number of symbols that balances the trade-off between generalizability and 

perceptual aliasing. 
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Figure 7-4: Number of bits of mutual information per symbol between a pair of successive scene 
symbols over 30 days. 

 

7.3 Perplexity and prediction accuracy 

Having settled on 30 symbols as the optimal number of clusters (for our given cluster 

tree) we can now answer questions about the predictive capacity and perplexity of the I 

Sensed data over a period of 30 days. As noted before not every moment presents the 

same number of alternatives for the future. This is experimentally verified in Figure 7-5 

where we plot perplexity versus symbol. This chart shows that the bottom five symbols 

have perplexities below 5 (i.e. at most 5 different symbols are seen after this symbol) and 

the top five symbols have perplexities over 14. If we go back to the data and see what 

these symbols are corresponding to then we note interestingly things. The low perplexity 

symbols denote scenes such as leaving home. Overwhelming the next scene is a 

commuting to work scene (i.e. taking the typical route to work), but there are a few a 

variations typically seen on weekends of the subject leaving home but not going to work. 
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The highest perplexity scene (perplexity of 22) was the office scene. Typically this was 

the base of operations for the subject because he could transition to almost any other 

major scene from here (home, restaurant for lunch or dinner, gym, go out with friends, 

etc.). A perplexity of 22 means that there were 22 distinct symbols that were observed to 

follow the given symbol. It gives us no indication of which of those symbols typically 

followed or rarely followed. We can look to predictive accuracy to measure these things. 
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Figure 7-5: Perplexity is plotted for each scene cluster (or symbol). The scene clusters are sorted 
from low to high perplexity. 

 

We show the prediction accuracy for each symbol in Figure 7-6. As intuition would 

suggest, some symbols yield more consistent predictions than others. The rank-1 

accuracies vary from 0% to 60%, but don’t seem to have any relationship to the 

perplexity of the symbol. This independence of predictive accuracy from perplexity is 

rather anti-intuitive. This becomes even more obvious if we plot the total predictive 

accuracy after throwing away the high perplexity parts of the data (Figure 7-7). This 
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means that the high perplexity is caused by the occasional occurrence of an unusual 

symbol after a given symbol, but the top 4 (rank-4) predicted symbols do represent the 

most typical situation. So we might conclude that statistical perplexity (i.e. number of 

choices weighted by occurrence) of all symbols is much lower than the hard perplexity 

depicted in Figure 7-5. For example approx 50% of all typical choices are in the top 4 

choices made by the 1st order Markov model. 
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Figure 7-6: This plot shows the ability of a 1st order Markov model to predict the next scene from the 
previous scene. The prediction accuracy varies widely depending on the scene. 
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Figure 7-7: Total prediction accuracy for the N symbols with the smallest perplexity (N=1…30). 
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Chapter 8: Conclusions 

In our opinion the most important contribution of this work is not the specifics of the 

algorithms we presented but rather the proof of feasibility and the empirical results we 

show about the complexity of the sensing and modeling required to segment, classify, 

and predict events in an individual’s day-to-day life. Of course, we expect many 

improvements on this work, especially in terms of more sophisticated models for 

prediction and (as always) more data with more subjects, but we believe that a few core 

ideas will survive this evolution for a long time to come. 

 

First, insect-like perception via low-resolution but wide field-of-view sensors provides 

just the right level of robustness and just the right kind of information needed to 

recognize the large variety of situations over the course of an individual’s day. The 

sensors don’t just focus on the area in front of the subject but it captures the periphery 

and rear, thus recording information about the user’s surroundings. We have found that 

by storing this kind of full-surround view-dependent information we can do very reliable 

situation matching (which subsumes location matching). These types of results are in 

agreement with the studies on insect navigation. 

 

Second, no complicated models based on highly specific knowledge about geometry or 

physics are required to match sequences of views in timescales from minutes to days. It 

turns out that all the variations in orientation of the camera (caused by the subject’s body 

movement) and the variations in lighting conditions (caused by weather, artificial 

lighting, AGC, etc.) are actually not so great when compared to the consistency displayed 

over many days. Truly debilitating variations in sensing conditions that prevent us from 

finding a reasonable match are rare and are simply indications of an unusual situation 

(something that is interesting in itself). A person’s life is largely classifiable by simple 

alignment and matching techniques at the pixel level! Let’s also not forget that all the 



 121 

experiments done were performed with a paltry 32x24 pixel image from each of the front 

and rear views*. 

 

Third, a person’s life is not an ever-expanding list of unique situations. There is a great 

deal of repetition and is evidenced by the success of the alignment and matching 

techniques used to define our similarity measure. Also we gave quantitative estimates of 

the actual perplexity of the various moments in the subject’s day. This analysis is very 

dependent on the class of symbols used to describe the evolution of an individual’s day. 

However, when we use situation-specific symbols the statistical perplexity we measured 

is 4 for 50% of the situations.  This means that in 50% of our daily situations, we 

typically limit ourselves to, or, are typically limited to only 4 choices. We believe this 

will have deep ramifications for the feasibility of general-purpose agents. 

 

It is exciting how many ways this work can be extended and improved. There is a lot of 

wide-open territory in the composition of the sensors used. We collected auditory and 

orientation data in addition to the visual, but didn’t require them in this work. Optical 

flow coupled with gyros and accelerometers in a similarly simple framework could 

theoretically capture the various telekinetic situations (sitting, running, gait, speed, etc.). 

The sensors used in this work are forever fixed on the outside and can only observe the 

results of the complex phenomenon happening inside the human body. Bio-sensors such 

as heart rate, breathing, galvanic skin response, hormone levels, and more are 

representative of the internal state of a person. These sensors could possibly provide us 

with a window into the why a person acts.  

 

                                                 
* This will hopefully please those concerned about the privacy issues surrounding ubiquitous cameras. 
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Figure 8-1: A proposed environment for re-experiencing the memories recorded by our I Sensed 
wearable. Front and rear views are projected onto hemispherical screens along with audio as the 
audience sits or stands on a motion platform. 

 

We can be certain that we will have the technology available to record more and more of 

our lives for later personal exploration and use. If this evolution is accompanied with a 

similar evolution in privacy protection then we can as a society and as individuals benefit 

from the availability of such records. The work in this thesis can be used to provide 

privacy filters on content (for example, sense but don’t record in certain situations), but 

their actual use in practice will undoubtedly be dictated by larger forces. 

 

There are many suggestive environments for re-experiencing past events recorded via 

wearable sensors (see Figure 8-1 for one possibility). As cameras become smaller and 

lower power and higher resolution, we can imagine the high quality recording of 

individual’s memories. Again we don’t need to limit ourselves to just the visual. These 

memories will become valuable commodities depending on the person and activity 

involved. Imagine training “memories” captured from fire fighters and police in real 

high-risk situations or Olympic athletes performing at their peak. These records can also 

be used for profiling processes such as the activities of doctors in hospitals to understand 

inefficiencies and the conditions that lead to errors. We have shown that at least we won’t 

be stuck with rewind and fast-forward as our only interfaces into the years of our lives’ 

recordings.
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