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Abstract

This thesis provides a fully automatic framework to analyze the facial actions and head
gestures in real time. This framework can be used in scenarios where the machine
needs a perceptual ability to recognize, model and analyze the facial actions and
head gestures in real time without any manual intervention. Rather than trying to
recognize speci�c prototypical emotional expressions like joy, anger, surprise and fear,
this system aims to recognize the head gestures and the upper facial action units such
as eyebrow raises, frowns and squints. These facial action units (AUs) are enumerated
in Paul Ekman's Facial Action Coding System (FACS) [17] and are essentially building
blocks, which can be assembled to form facial expressions. The system �rst robustly
tracks the pupils using an infrared sensitive camera equipped with infrared LEDs.
For each frame, the pupil positions are used to localize regions of eyes and eyebrow,
which are analyzed using statistical techniques to recover parameters that relate to
the shape of the facial features. These parameters are used as input to classi�ers
based on Support Vector Machines to recognize upper facial action units and their
all possible combinations. The system detects head gestures using Hidden Markov
Models that use pupil positions in consecutive frames as observations. The system is
evaluated on completely natural dataset with lots of head movements, pose changes
and occlusions. The system can successfully detect head gestures 78.46% of time.
Recognition accuracy of 67.83% for each individual AU is reported and the system
can correctly identify all possible AU combinations with an accuracy of 61.25%.
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Chapter 1

Introduction

A very large percentage of our communication is nonverbal and among these nonverbal

cues a large fraction is in the form of facial actions. The facial actions perform a

number of di�erent functions. Besides telling us about the a�ective and cognitive

state of a person [20], they are used as social and conversational cues and perform

semantic functions as well [7]. A system that could analyze the facial actions in real

time without any human intervention will have applications in a number of di�erent

�elds: for example, computer vision, a�ective computing, computer graphics and

psychology. Such a system will be an important component in a machine that is

socially and emotionally intelligent and is expected to interact naturally with people.

The problem of automatic face analysis is a hard one. The face is an immense

source of information about the psychological, physiological and cognitive state of a

person. This information can be thought of as signals/observations that are emitted

by the underlying hidden state of the person. These facial signals are very compli-

cated and we need a system to quantify these observations. A lot of people have

used emotional expressions like happy/sad/angry to quantify these facial signals. Al-

though this kind of quanti�cation scheme might suggest a direct relationship between

underlying emotions and facial expressions, the social, cultural and circumstantial

variables make this relationship very complicated. So, rather then using high level

descriptions like happiness, anger etc., we need a more basic quantifying scheme.

The Facial Action Coding System (FACS) developed by Ekman and Friesen [17] is

9



Table 1.1: Comparison of various face analysis systems

Recognize more
Real time Fully automatic than prototype

expressions

Black & Yacoob [3] No No No
1995

Esaa et al [18] Yes Yes No
1997

Tian et al [31] No No Yes
2000

a method of measuring facial activity in terms of facial muscle movements. FACS

consists of over 45 distinct action units corresponding to a distinct muscle or muscle

group. Though FACS has been criticized as only capturing a spatial description of

facial activity and ignoring the temporal component, it is perhaps the most widely

used language to describe facial activity at the muscle level. It is a standard system

which has been used in behavioral sciences for years.

While a lot of research has been directed towards systems that recognize faces

corresponding to prototypic expressions like joy and surprise, few approaches exist

that try to recognize facial actions such as eye-squint and frown. Table 1.1 compares

some of the previous facial expression analysis techniques. The state of the art systems

have severe limitations as they either require human intervention or do not recognize

more than prototypic expressions.

1.1 Thesis Objective

The purpose of this thesis is to develop a fully automatic framework that requires

no manual intervention to analyze facial activity in real time. The work is focused

on recognizing head gestures and upper AUs. These upper AUs are a subset of all

the AUs enumerated in Paul Ekman's Facial Action Coding System (FACS) [17] and

correspond to the regions of eyes and eyebrows (Table 1.2). In addition, the thesis

10



Table 1.2: The upper facial action units

AU number Facial action

1 Inner brow raiser
2 Outer brow raiser
4 Brow lowerer
5 Upper eye lid raiser
6 Cheek raiser
7 Lid tightener

addresses the issues of how to use statistical learning methods to automatically recover

parameters describing facial features and model them to analyze the facial actions

and recognize head gestures.

1.2 Application Scenarios in Computer Human

Interaction

A lot of research is being done to make machines socially and emotionally intelligent.

The machine that could understand behavioral cues about various emotional and so-

cial situations can inuence how humans interact with machines. This kind of system

can be used to assist humans in tasks that require people to make decisions based on a

number of social and emotional variables. One such system is the learning companion,

which is an a�ective peer/teacher that helps students through their learning journey.

A critical component of the learning companion is an a�ect recognition system and

the face analysis system is a part of this component. The work in this thesis draws its

motivation from the learning companion and the data used for training and testing

of the facial actions was gathered in the learning companion scenario. Below are the

details of the learning companion and the data used for the purpose of facial action

recognition. Although the work is focused on recognizing facial actions in a learning

situation, the ideas extend to other application scenarios as well.
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Table 1.3: Surface level behaviors

On-Task O�-Task
Facial Eyes Lowering
Actions tightening (AU 7), eyebrow (AU 1+4),

widening (AU 5), Nose
Raising eyebrows wrinkling

(AU 1+2), Depressing lower
Smile (AU 6+12) lip corner (AU 15)

Posture Leaning forward, Slumping on the
Sitting upright chair, Fidgeting

Eye-Gaze Looking towards Looking
the problem everywhere else

Head Nod/ Up-down head Sideways head
Head Shake nod shake

Hand Typing, clicking Hands not on
Movement mouse mouse/keyboard

1.2.1 Learning Companion: An A�ective Tutor

Learning the complex ideas involved in science, math, engineering, and technology

and developing the cognitive reasoning skills that these areas demand often involves

failure and a host of associated a�ective responses. These a�ective responses can

range from feelings of interest and excitement to feelings of confusion and frustration.

The student might quit if he is not able to recover from the `feeling of getting stuck'.

Expert teachers are very adept at recognizing and addressing the emotional state of

learners and based upon that observation taking some action that positively impacts

learning. One of the aims of the learning companion project at the MIT Media lab

is to build a computerized learning companion that can do that.

Skilled humans can assess emotional signals with varying degrees of accuracy,

and researchers are beginning to make progress giving computers similar abilities

at recognizing a�ective expressions. Computer assessments of a learner's emotional

state can be used to inuence how and when an automated companion chooses to

intervene.

The Learning Companion aims to sense emotional and cognitive aspects of the

12



learning experience in an unobtrusive way. Cues like posture, gesture, eye gaze and

facial expression help expert teachers to recognize whether the learner is on-task or

o�-task. A�ective states in learning (like interest/ boredom/ confusion/ excitement)

are accompanied by di�erent patterns of postures, gesture, eye-gaze and facial ex-

pressions. These surface level behaviors and their mappings are loosely summarized

in Table 1.3. Whether all of these are important, and are the right ones remains to be

evaluated, and it will no doubt take many investigations. Such a set of behaviors may

be culturally di�erent and will likely vary with developmental age as well. The point

is that there are variety of surface level behaviors related to inferring the a�ective

state of the user, while he or she is engaged in natural learning situations.

This thesis is primarily focused on analyzing faces. The facial expressions and head

gestures are good indicators of a�ective and motivational states. Reeves [27] showed

that the number of eye glances, the duration of eye glances, the number of times eyes

were closed, smiles, head turns and head stillness correlate with self-reported interest

for subjects watching movies. The interaction in learning companion is very di�erent

from the one that was used in the study and we believe that there are more facial

actions correlated with the emotional states important to the learning companion.

Approving head nods and facial actions like smile (AU 6+12), tightening of eyelids

while concentrating (AU 7), eyes widening (AU 5) and raising of eyebrows (AU 1+2)

might suggest interest/ surprise/ excitement (on task), whereas head shakes, lower-

ing of eyebrows (AU 1+4), nose wrinkling (AU 9) and depressing lower lip corner

(AU 15) might suggest the state o�-task. This work is focused on detecting the

above mentioned AUs (except AU 9,12 and 15) and the training and testing data for

the purpose of facial action recognition was collected in a real learning scenario, as

described below.

1.2.2 Data Collection and Annotation

25 kids ranging from 8 years to 11 years were invited to participate in an experiment.

These kids were asked to solve a number of puzzles that required mathematical rea-

soning. Videos of their faces were recorded by two cameras. A vision camera was
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placed on top of the monitor and an IBM Blue Eyes camera was placed under the

monitor. The IBM Blue Eyes camera [25] is an infrared camera equipped with in-

frared LEDs that helps in pupil tracking (see chapter 3). A FACS trained expert

coded the videos of the face for various action units. The video shot through the IBM

Blues Eyes camera was used as a source of both training and testing data for facial

action recognition.

1.3 Outline of the Thesis

This thesis focuses on two issues. First how to extract parameters that would describe

the facial features and second how to use these parameters to recognize facial actions

and head gestures. To answer these questions, I explore methods in statistical learning

to develop groundwork and experiment with this real world data to establish its

usefulness. The organization of this thesis is as follows:

� Chapter 2 reviews the prior work related to face analysis and related research

in the areas of machine learning and computer vision.

� Chapter 3 gives the overview of the system with emphasis on pupil tracking.

� Chapter 4 addresses example based learning to recover the shape parameters of

facial features in real time.

� Chapter 5 concerns real-time recognition of facial actions and head gestures

using statistical machine learning techniques.

� Chapter 6 summarizes the result, discusses potential applications and concludes

the thesis with suggestions for future work.
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Chapter 2

Related Work

There has been a lot of research on building systems to automatically analyze the

face. Most of this research has focused on systems that use computer vision and

pattern recognition techniques to passively sense the facial activity. Most of these

systems can be broadly classi�ed into two categories:

� Systems that recognize prototypic facial expressions corresponding to basic emo-

tions. For example: happy/sad/angry etc.

� Systems that recognize facial actions. For example: frown, eyebrow raise, nose

wrinkle etc.

This chapter gives a brief overview of some of these approaches. Both kinds

of approaches need to extract features or meaningful information from the image

sequences for the purpose of recognition. These features can be optical ows, Gabor

wavelet representations, geometrical features or any set of parameters that could

model the facial activity. This chapter also describes related work in facial feature

extraction. As it is impossible to cite all the work on face analysis, the following are

some of the important ideas that lay the foundation for this thesis.

In passing, I would like to mention that there have been approaches that try to

sense the facial movement using wearable sensors like masks or glasses. For example,

Expression Glasses built by Scheirer et al [28] can sense upward eyebrow activity

indicative of expressions such as interest and downward eyebrow activity indicative

15



of confusion or dissatisfaction. These wearables are more accurate in sensing the

facial activity than a camera, but they are more physically intrusive.

2.1 Recognizing Facial Expressions

Ekman and Friesen [15] [16] have proposed that there are some prototypic facial

expressions that are universal and correspond to basic human emotions. Based on

this, a lot of research has been directed at the problem of recognizing 5-7 classes of

prototypic emotional expressions on groups of people from their facial expressions.

Black and Yacoob [3] describe a system that recognizes facial expressions in pres-

ence of signi�cant head motions. They use parameterized optical ow models to

track rigid and non-rigid facial movements. In an earlier version Yacoob and Davis

[34] use optical ow at high gradient points on the face to recognize facial expres-

sions. Essa and Pentland [18] analyze the facial expressions using optical ow in an

estimation and control framework coupled with a physical model describing the skin

and muscle structure of face. Zhang [37] has compared the use of geometrical features

with a multi-scale, multi-orientation Gabor wavelet based representation to identify

expressions.

Although prototypic expressions, like happy, surprise and fear, are natural, they

occur infrequently in everyday life. A person might communicate more with subtle

facial actions like frequent frowns or smiles. Further there are emotions like confusion,

boredom and frustration for which any prototypic expression might not exist. Thus,

a system that aims to be socially and emotionally intelligent needs to do more than

just recognize prototypic expressions.

2.2 Recognizing Facial Actions

Very little facial expression analysis research has focused on recognizing speci�c facial

actions like raising an eyebrow, squinting and depressing the lip corners. Choudhury

[6] has demonstrated a system to recognize some basic facial actions like mouth ac-
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tivity and eye-movements using Hidden Markov Models (HMMs) and multidimen-

sional receptive �eld histograms. Her system only recognizes basic facial actions like

blinks/mouth open/eyes closed etc. and cannot recognize more subtle facial actions

like eye-widening.

Kawato and Ohya [23] have described a system to detect head nods and head

shakes in real time by directly detecting and tracking the \between-eyes" region.

The \between-eyes" region is detected and tracked using a \circle frequency �lter",

which is a discrete Fourier transform of points lying on a circle, together with skin

color information and templates. Head nods and head shakes are detected based on

pre-de�ned rules applied to the positions of \between-eyes" in consecutive frames.

Motivated by Paul Ekman's Facial Action Coding System (FACS), some of the

approaches attempt to recognize action units (AUs) - the fundamental muscle move-

ments that comprise Paul Ekman's Facial Action Coding System, which can be com-

bined to describe all facial expressions [17]. These facial actions are essentially facial

phonemes, which can be assembled to form facial expressions.

Tian et al [31] have developed a system to recognize sixteen action units and any

combination of those. The shape of facial features like eyes, eyebrow, mouth and

cheeks are described by multistate templates. The parameters of these multistate

templates are used by a Neural Network based classi�er to recognize the action units.

This system requires that the templates be initialized manually in the �rst frame of

the sequence, which prevents it from being fully automatic. In an earlier work, Lien

et al [24] describe a system that recognizes various action units based on dense ow,

feature point tracking and edge extraction.

Donato et al [13] compared several techniques, which included optical ow, princi-

pal component analysis, independent component analysis, local feature analysis and

Gabor wavelet representation, to recognize eight single action units and four action

unit combinations using image sequences that were manually aligned and free of head

motions. They showed 95.5% recognition accuracy using Independent Component

Analysis and Gabor wavelet representations. Bartlett et al [1] achieve 90.9% accu-

racy in recognizing 6 single action units by combining holistic facial analysis and
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optical ow with local feature analysis. Both of the above approaches report their

results on manually pre-processed image sequences of individuals deliberately making

facial actions in front of a camera.

Cowie et al [12] describe a system to recognize facial expressions by identifying

Facial Animation Parameter Units (FAPUs) de�ned in MPEG-4 standard by feature

tracking of Facial De�nition Parameter(FDP) points, also de�ned in MPEG-4 frame-

work. The system is not fully automatic and requires human assistance to accurately

detect FDP points.

2.3 Facial Feature Tracking

Facial action analysis requires extraction of features, either physical (features like eyes,

brows etc) or appearance based (Optical ows, Gabor coeÆcients etc that represent

movements and positions of facial feature).

There is much prior work on detecting and tracking facial features. Many feature

extraction methods are based on deformable templates [36], which are diÆcult to use

for real-time tracking and have to be initialized properly to achieve a good perfor-

mance. Tian et al [29, 30] use multiple-state templates to track the facial features.

Feature point tracking together with masked edge �ltering is used to track the upper

facial features. The system requires that templates be manually initialized in the �rst

frame of the sequence, which prevents it from being automatic.

There have been other approaches that do not depend upon computer vision

techniques only. Morimoto et al [25] have described a system to detect and track

pupils using the red-eye e�ect. Haro et al [21] have extended this system to detect

and track the pupils using a Kalman �lter and probabilistic PCA. These kinds of

systems can track pupils very robustly eliminating the need of manual initialization

or any kind of pre-processing.

The tracking of facial features in detail requires recovering the parameters that

drive the shape of the feature. A lot of research has been directed towards recovering

shape using image matching techniques. Jones and Poggio [22] used a stochastic
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gradient-descent based technique to recover the shape and the texture parameters.

Cootes et al [8] use active appearance models, which are statistical appearance models

generated by combining a model of shape variation with a model of texture variation,

for the purpose of image matching. Covell et al [10, 11] exploit the coupling between

the shape and the texture parameters using example images labeled with control

points. The shape is recovered from the image appearance in an non-iterative way

using eigen analysis. Given an image of the face, this approach �rst needs to estimate

the location of features of interest, which is diÆcult to do robustly in real time.

Most of the approaches mentioned are not highly robust as often these problems

need to solve a search problem in this very high dimensional space. Although there

are techniques to reduce the dimensionality [32], it is mostly impossible to span the

space. Lately there has been a lot of interest in solving vision problems using belief

propagation [19, 33]. Rather than analyzing the whole image, small patches (hence

low dimensional) are analyzed and belief about each patch is propagated in the whole

image. Coughlan et al [9] have used belief propagation to �t deformable shape models.

Freeman et al [19] have provided a framework for solving low level vision problems

using belief propagation and showed some promising results.
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Chapter 3

System Overview

To recognize facial actions, relevant features from the observations need to be ex-

tracted. The observation here can be raw video or any other sensory information

obtained from the face. Once the features are extracted, the second task is to classify

them to recognize di�erent facial actions. The performance of the recognition task

depends not only on how well the features represent the facial actions, but also on

how well these features can be extracted.

Most researchers have focused on video or images of the frontal face [1, 13, 18, 31,

3]. The features that are usually extracted for the purpose of face analysis range from

optical ow �elds [4, 18, 3] to gabor coeÆcients [37]. A lot of di�erent approaches

[4, 13, 18, 31, 3, 37] have been used to classify the features to recognize facial actions.

This work is divided into three parts. Figure 3-1 gives you an overview of the

system. The �rst two parts are concerned with robust extraction of the features that

are highly correlated with the facial actions. I use more than just computer vision

to extract these features. The red-eye e�ect [21] is a a physiological property of the

eye and the �rst part concerns using it to robustly track the pupils. Once the pupil

positions are known, those are then used to get the shape information of the eyes

and the eyebrows using templates. Finally, the upper facial action units and head

gestures are recognized using machine learning techniques that classify the extracted

features. This chapter explains the overall architecture of the system in detail with

emphasis on the �rst part.
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Figure 3-1: The overall system

3.1 Part 1: Finding and Tracking Pupils

In the foundation of this work, lies a system that can detect pupils using the red-eye

e�ect. The system's robustness to occlusions and head motions makes it ideal to

be used for facial feature extraction. As the pupil positions can be recovered very

eÆciently and robustly, it eliminates the need of manual labeling or pre-processing of

the images, a required step that plagues a number of pure vision based approaches.

Although the red-eye e�ect has been known for quite sometime, it is in recent

years that it has grabbed a lot of attention for vision applications. Morimoto et al

[25] have described a system to detect and track pupils using the red-eye e�ect. Haro

et al [21] have extended this system to detect and track the pupils using a Kalman

�lter and probabilistic PCA. I use an infrared camera equipped with infrared LEDs,

which is used to highlight and track pupils and is an in-house built version of the

IBM Blue Eyes camera (http://www.almaden.ibm.com/cs/blueeyes).

The pupil tracking system is shown in Figure 3-2. The whole unit is placed under

the monitor pointing towards the users face. The system has an infrared sensitive
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Figure 3-2: Camera to track pupils, placed under the monitor

camera coupled with two concentric rings of infrared LEDs. One set of LEDs is on

the optical axis and produces the red-eye e�ect. The other set of LEDs, which are

o� axis, keeps the scene at about the same illumination. The two sets of LEDs are

synchronized with the camera and are switched on and o� to generate two interlaced

images for a single frame. The image where the on-axis LEDs are on has white pupils

whereas the image where the o�-axis LEDs are on has black pupils. These two images

are subtracted to get a di�erence image, which is used to track the pupils. Figure 3-3

shows a sample image, the de-interlaced images and the di�erence image obtained

using the system.

The pupils are detected and tracked using the di�erence image, which is noisy due

to the interlacing and motion artifacts. Also, objects like glasses and earrings can show

up as bright spots in the di�erence image due to their specularity. To remove this noise

we �rst threshold the di�erence image using an adaptive thresholding algorithm [21].

First, the algorithm computes the histogram and then thresholds the image keeping

only 0.1 % of the brightest pixels. All the non-zero pixels in the resulting image are

set to 255 (maxval). The thresholded image is used to detect and to track the pupils.

The pupil tracker is either in a detection mode or a tracking mode. Whenever there

is information about the pupils in the previous frame the tracker is in tracking mode

and whenever the previous frame has no information about the pupils the tracker

switches to the detection mode. The pupil tracking algorithm is shown in Figure 3-4.

During the tracking mode the tracker maintains a state vector, comprised of the
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De−interlaced sampled image,
when the on−axis LEDs are offwhen the on−axis LEDs are on

De−interlaced sampled image,

Figure 3-3: Pupil tracking using the infrared camera

spatial information about the pupils. Speci�cally, the average distance between the

pupils during the current tracking phase and their x, y coordinates in the previous

frames is maintained. To obtain the new positions of pupils a search for the largest

connected component is limited to a bounding box centered on previous pupils. The

new connected components are accepted as valid pupils when they satisfy a number

of spatial constraints. If the area is greater and the displacement of their centers from

previous pupil position lies below a certain threshold, the connected components are

considered valid. Also if a connected component is found for both the eyes then the

distance between these pupils is also compared with the average distance maintained

in the state space to rule out false detections. Once the connected components are

identi�ed as valid pupil regions, the state vector is updated.
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Figure 3-4: The Pupil tracking Algorithm

The tracker switches to the detection mode whenever there is no information

about the pupils. In this mode the tracker simply selects the two largest connected

components that have an area greater then a certain threshold. Again, to validate

the regions, we apply some spatial constraints. Head movements during head nods

and head shakes do produce motion artifacts but due to the nature of our algorithm

to spatially constrain the search space, it tracks the pupils well. In extreme cases

when head movements are too fast, the pupils are lost as motion artifacts overpower

the red-eye e�ect and the pupils are absent from the di�erence image altogether.
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3.2 Part 2: Finding and Tracking Facial Features

Eyebrow Template

Eye Template

Figure 3-5: Eye and Eyebrow Templates

Templates are used to represent the detailed shape information of the facial fea-

tures. Eye and eyebrow templates, used in the system, are shown in Figure 3-5. A

set of 8 points placed on the eye contour describes the shape of an eye. Two of these

points correspond to the eye corners and the rest are equidistant on the contour.

Similarly 3 points are used to describe the shape of an eyebrow. A total of 22 points

(8 for each eye and 3 for each eyebrow) are used to describe the positions and shapes

of upper facial features. Tian et al [29, 30] use a template that consists of the iris

location and two parameterized parabolas, which would �t the lower and the upper

eyelid. They use the corners of eyes and center points on the eyelids to extract the

template parameters. As our system tracks more points than eye-corners and center

points on the eyelid, it can represent more detailed and accurate information about

the shape.

The pupil positions obtained in part 1 are used to crop out regions of interest:

two 140 x 80 pixel images of the eyes and two 170 x 80 pixel images of eyebrows.

The template parameters for the features are recovered by analyzing these extracted

images using example based learning. Chapter 4 describes how to recover these shape

parameters in detail.
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3.3 Part 3: Classifying Facial Actions

Once the parameters describing the facial features are recovered, the facial actions and

head gestures are recognized using machine learning techniques. A Hidden Markov

Model (HMM) [26] based classi�er is used to detect head nods and head shakes. A

separate Support Vector Machine is trained for each facial action unit. The parame-

ters that describe the shape of facial feature in a frame are �rst normalized to account

for di�erent head orientations. These normalized parameters are used as input fea-

tures to the support vector machines to detect occurrence of facial actions. Since

we use a separate classi�er for each action unit, they can detect action unit combi-

nations. Chapter 5 describes the classi�cation of facial action and head gestures in

greater detail.

26



Chapter 4

To Recover the Shape

For the purpose of facial action analysis, we need to track the facial features robustly

and eÆciently. Also, rather then just tracking the positions of facial features, we

need to recover the parameters that drive the shape of the feature. The variability

in appearance of facial features changes due to pose, lighting, facial expressions etc

making the task diÆcult and complex. Even harder is the task of tracking the facial

features robustly in real time, without any manual alignment or calibration. Many

previous approaches have focused just on tracking the location of the facial features

or require some manual initialization/intervention. In this chapter, I describe how we

can robustly recover the shape of facial features in detail using templates in real time

without requiring any manual intervention.

Our system exploits the fact that it can estimate the location of pupils very

robustly in the image. Once the pupils are located, regions of interest corresponding

to eyes and eyebrows are cropped out and analyzed to recover the shape description.

For the purpose of the facial action analysis, the �ducial points of the templates

describing eyes and eyebrows(Figure 3-5) are considered as shape parameters. Our

goal is then to recover these �ducial points in a new image.

Cootes et al [8] distinguishes two kinds of parameters that characterize an image.

Those, that correspond to the texture of an image and, those that drive the shape of

the object of interest. Jones et al [22] similarly represent an image in terms of a shape

vector and a texture vector. Although the texture parameters can be recovered fairly
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easily, it turns out that the shape parameters introduce a non-linearity in the search

for parameters. Techniques ranging from optical ow [2] to gradient descent [8, 22]

have been suggested to recover the shape. The methods described in this chapter

use learning by example. Speci�cally, given some example images as training data,

hand annotated for shape parameters, the techniques tries to estimate the relationship

between the shape parameters and the example images. The shape in a new image

then can be estimated using this learnt relationship.

The next section describes a very simple approach that recovers shape parameters

assuming a linear relationship between shape parameters and image observations.

This method is most similar to the eigenpoints approach by Covell et al [10, 11].

Following that, the same problem is discussed in a more general Bayesian estimation

framework. After that, I describe how belief propagation can be used to further

re�ne the shape recovery and address some issues that arise in the Bayesian estimation

framework. Finally, I conclude the chapter with some experimental results. For all the

methods described in this chapter it is assumed that we have a training set of image

vectors fi1; i2; ::; ing, where each image vector ik is pre-annotated with a corresponding

vector of shape parameters sk. For the purpose of facial action analysis, the images

i are cropped images of eyes and eyebrows and the vector of shape parameters s is a

stack of x,y coordinates of �ducial points.

4.1 Recovering Shape using Principal Component

Analysis

To recover the shape parameters in a test image, say itest, a very naive approach

will be to �nd an image, imatch, from the training set of pre-annotated images that

resembles most to itest. The shape parameters of itest then can be approximated

by the shape parameters smatch, which corresponds to imatch. This approach cannot

generalize well, as there can be only a �nite number of example images in the training

database. A more general approach will be to represent the test image as a linear
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combination of example images. The same linear combination can be applied to

the corresponding shape parameters of the example images to recover the shape in

the new image. Principal component analysis (PCA) can be used to �gure out the

representation of the test image in terms of the linear combination of example images.

Given n example images ik, let sk (k = 1::n) be vectors corresponding to the marked

control points on each image. If i is the mean image, then the covariance matrix of

the training images can be expressed as:

� = P�PT where P = [i1 � i; i2 � i; :::; in � i]

The eigenvectors of � can be computed by �rst computing the eigenvectors for PT �P.

If V = [v1;v2; ::vn] where vk represents the eigenvectors of P
T �P, then the eigenvec-

tors uk of � can be computed as:

U = [u1;u2; :::;un] = P�V

As the eigenvectors are expressed as a linear combination of example images, we

can express the shape parameters corresponding to the eigen images using the same

linear combination. Let s be the mean of the vectors corresponding to the control

points in example images and let Q = [s1 � s; :::; sn � s], be the matrix of unbiased

shape parameters. Then, the shape parameters ~sk (k = 1::n) corresponding to an

eigenvector uk can be computed as:

[~s1;~s2; :::;~sn] = Q�V

To recover the shape parameters in the test image, we �rst express the new im-

age as a linear combination of the eigenvectors by projecting it onto the top few

eigenvectors.

inew =
X
k

akuk + i (4.1)

where ak = (itest � i)T �uk and uk is the k
th eigenvector.The same linear combination

is applied to the shape parameters of corresponding eigenvectors to recover the new

shape.
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snew =
X
k

ak~sk + s (4.2)

This strategy is a simpli�cation of the approach used by Covell et al[10, 11] and

performs well for the purpose of the facial feature tracking, particularly on the subjects

who had images in the training set. Note that there is no initialization step, which

was very critical in many template matching approaches. Further, the non-iterative

nature of the approach makes it ideal to be used in a real-time system.

Despite various advantages, this strategy has some shortcomings. It assumes a

linear relationship between the image and the shape parameters, which might not

be the case always. Also, it uses principal component analysis to recover the shape,

hence it inherently assumes that the top eigenvectors capture the shape variations,

which is erroneous. There may be variations due to lighting which would contribute

highly to the principal components. As described in the next section, this strategy is

a special case of a Bayesian estimation framework and we can come up with a method

to recover shapes that does not have these problems.

4.2 Recovering Shape in an Estimation Framework

The general scenario of Bayesian estimation is that there is some measurement y and

some unobserved quantity of interest x. Given joint statistics of x and y , we want

to �nd out the function that best estimates x based on observing y. In a Bayesian

framework this estimator function is chosen to optimize a suitable performance crite-

rion. In particular, given a cost function C(a; â) that speci�es the cost of estimating

a vector a as â , we choose the estimator that minimizes the average cost, i.e.,

x̂(�) = argmin
f(�)

E[C(x; f(y))] (4.3)

Given a suitable cost criterion we can �nd out an optimal estimator x̂(�) in a

Bayesian sense. One of the most commonly used cost criterion is the least square

error. If we choose least square error as our error criterion then the estimator is the
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mean of the posterior density pxjy(xjy) and is called the Bayes least square estimator.

x̂bls(y) = E[xjy = y] =

Z
x

xpxjy(xjy)dx (4.4)

We can use this Bayes least square estimate to recover the shape parameters given

an image. So in terms of the variables used above, the measurement y is a random

vector I corresponding to the observed image and the quantity of interest x is a

random vector S corresponding to the shape parameters. If we know the posterior

pSjI(sji), then given an image vector i we can estimate its shape parameters in a

Bayes least square sense according to equation 4.4. Critical to this estimation is the

posterior, which can be determined using the Bayes rule as:

pSjI(sji) =
pS;I(s;i)

pI(i)

Given example images pre-annotated for shapes, the posterior can be estimated

using regular probability density modeling techniques. Due to the huge dimension-

ality of the image space, it is almost impossible to accurately estimate the posterior

probability density using just a few hundred example images. The problem becomes

simpler if we assume certain properties about the distribution. For example, a lot of

people [32, 11] have tried to model image spaces using principal component analysis

(PCA), which by virtue of considering only mean and covariance is equivalent to as-

suming a Gaussian model. These assumptions on the probability densities constrain

the relationship between image and the shape. One special case is when the shape

parameters S and the image observations I are jointly Gaussian. For the jointly Gaus-

sian case the Bayes least square estimate is equal to the linear least square estimate

and can be computed as,

ŝbls(i) = E[SjI = i] = s +�S;I�
�1
I (i� i) (4.5)

Where s = mean(S), i = mean(I),

�S;I = Covariance(S; I) and �I = V ariance(I)
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Now, consider the combined image and shape parameter matrix [PT QT ]T . P

and Q are unbiased matrices of image data and corresponding shape parameters

respectively. Each column of P corresponds to an unbiased image represented as a

column vector. Similarly, each column of Q corresponds to an unbiased vector of

shape parameters. In the combined matrix each column of P is aligned with it's

corresponding shape vector in Q. If we consider the following eigen decomposition

[10, 11],

2
4P
Q

3
5
2
4P
Q

3
5
T

=

2
4UI

US

3
5�2

2
4UI

US

3
5
T

(4.6)

Columns of [ UI

US
] are eigen vectors of the combined image shape parameter sub-

space. It can be shown that �S;I = US (c�2) UT
I and �I = UI (c�

2) UT
I . Where c is

a scalor and equal to 1
number of examples �1

. Plugging in for �S;I and �I in equation

4.5 we get,

ŝbls(i) = s+USU
�1
I (i� i) (4.7)

Comparing this equation with equation 4.2, we can see that both the methods

are very similar. In fact the two methods are equivalent if the columns of UI are

exactly equal to the eigen vectors of the image space. So, if we assume S and I to

be jointly Gaussian then this Bayesian approach reduces to the approach described

earlier and constrains the relationship between S and I to be linear. Also this means

that estimation in this framework will su�er from the same drawbacks of the previous

approach. So rather than making assumptions about the probability densities, per-

haps, we should try to model the posterior as exactly as possible. There are modeling

techniques like sampling and representations like mixture of Gaussian, that allow to

model any kind of probability density function. Unfortunately, it is very diÆcult to

model this probability density function accurately. The dimensionality of image space

is very high and compared to this dimensionality the number of example images is

small.
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Since working with the whole image is so diÆcult, it might be better to work with

smaller, more manageable image patches. The whole image can be broken down to

small, manageable image patches and can be analyzed to recover some local beliefs.

Then to recover a global property of the image (for example, shape parameters) the

local beliefs can be juxtaposed and analyzed in totality. This is the main idea behind

recovering shape parameters using belief propagation, which we describe in the next

section.

4.3 Recovering Shape by Propagating Bayesian

Beliefs

In recent years, a number of researchers have used belief propagation to solve a

number of problems in computer vision [9, 19, 33]. This method is motivated by

VISTA, Vision by Image/Scene TrAining, as described by Freeman et al [19]. The

relationship between an image and its shape parameters can be modeled by �rst

estimating a relationship between local image patches and shape parameters, and

then modeling the relationship between the shape parameters of neighboring image

patches. Figure 4-1 shows the graphical way to represent this relationship. The whole

image I is divided into image patches represented by yi's. The xi's, underlying scene

variables correspond to the shape parameters, are statistically related to an image

patch yi and also to its spatial neighbors. The link between yi's and xi's allows an

initial scene estimate, whereas the link between an xi and its spatial neighbors allows

the estimate to propagate. Under the Markovian assumptions, the underlying scene

variable (xi), given values of all its neighboring scene variables, should contain all the

information required to recover shape parameters from the image patch it connects

to.

Consider the case when the shape parameter to be recovered is only one �ducial

point on the image. Then, the underlying scene variables can be assigned values

according to their spatial distribution with respect to the �ducial point in the image.
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Figure 4-1: Markov network topology to recover the shape

Figure 4-2 shows how the scene variables are assigned based on their spatial positions.

The whole image is divided into patches (shown by dotted lines). We use 20 x 20

image patches in our implementation. The shape parameter is a single �ducial point

which lies in one of the image patches. The scene variable corresponding to the

image patch where the �ducial point lies takes the value (same; same). Similarly, the

scene variable corresponding to other image patches can take one of the nine possible

states, depending upon the spatial position of the image patch they are connected

to. This method works as if it was solving a jigsaw puzzle. The patches are analyzed

individually to get the local beliefs. The aim here is to �nd a con�guration that will

both support the local evidence and satisfy the spatial constraints as well. Once the

beliefs are propagated, the image patch most likely to be in state (same; same) is

chosen and the �ducial point can be recovered using the techniques similar to the

ones described earlier in the chapter. The di�erence is that rather than analyzing the

whole image, we only need to analyze the patches most likely to contain the �ducial

points. Further, we can more accurately model the probability distribution between

image patches and the shape parameters.

The approach described here is mostly limited to the case where the shape pa-

rameter is just one �ducial point. For scenarios where the shape description has more
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Figure 4-2: Spatial distribution of scene variables

than one point, this approach can be applied to each point separately. The choice of

representation for the underlying scene variable is very critical to the performance of

this approach and perhaps this representation might not be the best.

The statistical relationships between image patches and scene variables and be-

tween neighboring scene variables can be learnt using examples in the training set. To

recover the shape, the patches of the new image can be analyzed and beliefs about the

state of the underlying scene variables can be propagated using inference algorithms.

One such inference algorithm is belief propagation. If we denote the relationship be-

tween yi's and xi's as �(yi; xi), and the relationship between neighboring nodes (i; j)

as  (xi; xj) then the joint probability between the scene variables and the image can

be given by [19],

P (x1; x2; :::; y1; y2; ::) =
Y
(i;j)

 (xi; xj)
Y
k

�(yk; xk)

In our implementation, the compatibility functions  and � are conditional prob-

abilities:  (xi; xj) = P (xijxj) and �(yj; xj) = P (xjjyj). These can be computed

from the training data. The Bayes least square estimate for x̂i can be computed by
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marginalizing over the other variables and for discrete variables can be computed as:

x̂jbls =
X
xj

xj
X
xi;i6=j

P (x1; x2; :::; y1; y2; ::)

The Bayes least square estimate can be computed for networks without loops using

simple message passing rules as following [19]:

x̂jbls =
X
xj

xj�(yj; xj)
Y
k

Mk
j (4.8)

Here k runs over all the neighbors of j. if ~M l
k is the message from node l to k in the

previous iteration then Mk
j , the message from node k to node j, can be computed as:

Mk
j =

X
xk

 (xj; xk)�(yk; xk)
Y
l 6=j

~M l
k (4.9)

The Markov network suggested for shape recovery contains loops and unfortu-

nately the message passing rules mentioned above are invalid for networks with loops.

But there are strong experimental and theoretical results [19, 35] that motivate ap-

plication of belief propagation rules.

4.4 Implementation and Results

For all the tests described here, our training set consisted of 150 images of eyes and

eyebrows from ten di�erent individuals with di�erent facial expressions and di�erent

lighting conditions. Each eye region of size 140 x 80 is separately analyzed. Simi-

larly each eyebrow image of 170 x 80 pixel resolution is used to recover the eyebrow

template. These images were hand marked to �t the facial feature templates.

The approach that uses PCA to recover shape was implemented and worked in real

time at 30 fps on a Pentium-III 933 MHz Linux machine. The training set was �rst

processed o�ine to compute the required eigenvectors. During the real-time tracking

the cropped images of the eyes and eyebrows are projected on the corresponding top
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Table 4.1: Mean RMS error per control point location

PCA Belief Propagation
Subject in Training Set 0.65 0.80

Subject not in Training Set 0.78 0.83

few eigenvectors. Experiments showed that �rst 40 eigenvectors were good enough

for the task and in our implementation we use those. These projections are used to

recover the control points using the approach explained before. This approach worked

particularly well on the subjects who had their images in the training database.

The approach that uses belief propagation to recover shape was also implemented.

The system was not real-time. The training data was used to learn the compatibility

function  and �. For simplicity, PCA based shape recovery was used to recover the

�ducial point from the image patch most likely to contain the point.

Both the approaches were compared on two image sequences. The �rst sequence

consisted of 93 frames and the subject in that sequence was in the training database.

The second sequence was 100 frames long and the subject in this sequence did not

appear in the database. The eye and eyebrow corners were handmarked in both the

sequences and these points were compared with the points tracked automatically by

both the approaches. Table 4.1 shows the mean RMS di�erence per control point

between the points manually marked and points tracked by the two approaches. As

shown by results, the belief propagation as implemented here does not provide signif-

icantly better results as compared to the PCA based approach. Our real-time system

tracks the facial features using the PCA based approach, but the belief propagation

seems promising and we are further exploring better techniques that will enable us

to track the facial features more accurately.

Figures 4-3 and 4-4 show tracking results of some sequences. Both the subjects

appearing in Figure 4-3 were in the training database. The system is able to track

the features very well. Note that in the �rst sequence of Figure 4-3 the left eyebrow

is not tracked in frames 67, 70 and 75 as it is not present in the image. Similarly all

the templates are lost in the frame 29 in the second sequence of Figure 4-3 when the
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pupils are absent, as the subject blinks. The templates are recovered as soon as the

features reappear. Figure 4-4 shows the tracking results for the subjects not in the

training set. Again, note that the second frame in the �rst sequence does not show

any eyes or eyebrows, due to the fact that the subject blinked and hence no pupils

were detected. The tracking is recovered in the very next frame when the pupils are

visible again.

The results show that the system is very eÆcient, runs in real time at 30 fps and

is able to track upper facial features robustly in presence of large head motions and

occlusions. One limitation of our implementation is that it is not invariant to large

zooming in or out as �xed size images of the facial features are cropped. Further, our

training set did not have samples with scale changes. Also in a few cases with some

new subjects, the system did not work well, as the training images were not able

to span the whole range of variations in appearance of the individuals. A training

set which captures the variations in appearance should be able to overcome these

problems.

Frame 57 Frame 67 Frame 70 Frame 75 Frame 88

Frame 27 Frame 28 Frame 29 Frame 30 Frame 31

Figure 4-3: Tracking results for subjects in training set
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Frame 59 Frame 60 Frame 61 Frame 68 Frame 87

Frame 25 Frame 28 Frame 38 Frame 45 Frame 55

Figure 4-4: Tracking results for subjects not in training set.
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Chapter 5

Recognizing Facial Actions

Once the shape parameters describing the facial features are extracted the next step

is to identify the facial actions they correspond to. The head gestures can also be

recognized by observing these facial parameters over time. In this chapter, I discuss

the challenges involved in building a real-time system that recognizes head gestures

and upper facial action units (AUs). The �rst section concerns the facial action

recognition from a video frame. Following that section, I describe how temporal

information can be used to recognize head gestures in real time.

5.1 Facial Action Recognition

There are over 40 di�erent facial action units enumerated in FACS [17] and more

than 7,000 di�erent AU combinations have been observed. A system that aims to

analyze faces should not only recognize a single AU but the combinations of AUs as

well. The AU combinations can be additive or non-additive. The appearance of AUs

does not change when additive combination of AUs occur, whereas in non-additive

combinations, the appearance of individual AUs does change.

Researchers in the past have used a number of classi�cation techniques to recognize

action units and their combinations. Donato et al [13] have shown classi�cation

results based on a number of feature extraction techniques. They have used a nearest

neighbor classi�er and template matching for the purpose of recognition. Each facial

40



Table 5.1: Shape parameters used for recognizing AUs

Action unit Facial action Shape Parameters Used
1 Inner brow raiser Fiducial points on eyebrows
2 Outer brow raiser Fiducial points on eyebrows
4 Brow lowerer Fiducial points on eyebrows
5 Upper eye lid raiser Fiducial points on eyes
6 Cheek raiser All �ducial points
7 Lid tightener Fiducial points on eyes

Neutral All �ducial points

action combination that they try to recognize is treated as a separate AU. As there

are a large number of AU combinations, modeling each AU combination separately is

not appropriate. Tian et al [31] have used neural networks to recognize facial actions

and their combinations. They use a separate neural network for the upper face and

for the lower face, and given all the upper or lower facial feature parameters as input,

multiple nodes corresponding to each occurred AU are excited.

There are lots of classi�ers that could be used for the purpose of AU recognition.

Support Vector Machines (SVM) have been shown to perform well on a number

of classi�cation tasks. SVM is an optimal discriminant method based on Bayesian

learning theory and generalizes well. I use Cawley's SVM toolbox [5] to train the

SVMs to classify facial feature parameters that correspond to an occurrence of a

particular AU from the ones that don't. A separate SVM for each AU is trained using

examples. During the recognition phase, the extracted facial feature parameters in

each frame are classi�ed by all the SVMs to �gure out which AUs were present. Also

rather than using all the shape parameters, we use only those that are most indicative

of the action unit that we are trying to recognize. Table 5.1 shows the parameters

used to recognize each action unit.

5.1.1 Classi�cation using Support Vector Machine

Classi�ers based on support vector machine (SVM) perform binary classi�cation by

�rst projecting the data points onto a linearly separable feature space and then, using
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a hyperplane that is maximally separated from the nearest positive and negative data

points. Mathematically, given a set of N training data (xi; yi), where xi 2 R
d with

corresponding label yi 2 f1;�1g, the support vector machine classi�es a data point

x using,

f(x) =
NX
i=1

�iyik(x; xi)� b

Here k(x; xi) is a positive de�nite kernel function and speci�es an inner product

between x and xi in the linearly separable feature space. The xi's corresponding to

non-zero �i's are support vectors. The �i's and the bias b can be obtained by solving

an optimization problem. For the purpose of classifying facial actions, x is the vector

of relevant shape parameters and the sign of f(x) determines whether an AU has

been recognized or not.

Before using the facial feature parameters for classi�cation, we need to do some

pre-processing. There is a lot of variability in raw facial features due to changes in

pose, zoom, personal variations etc. The parameters need to be normalized to account

for these variations. Also, rather than using just the facial feature parameter, we

should use the relative di�erence of the facial feature parameters from the parameters

that correspond to a neutral face. In the system, we consider the inner eye corners as

origins of the coordinate system. The position relative to the eye corner is normalized

using the interpupillary distance. These normalized parameters are then subtracted

from the normalized parameters corresponding to a neutral frame. These parameters

are used as input features to the SVMs. The next section describes evaluation of the

system and the results.

5.2 Evaluation and Results

The facial action database has 8 kids in a real learning situation. These kids were

asked to play a game called the fripple place [14]. The game has a number of puzzles

that requires mathematical reasoning. Each kid worked on these puzzles for about

20 minutes. Videos of their faces were recorded by two cameras. A vision camera
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Table 5.2: Details of AUs and their combinations in the dataset

AU Combination Number of Samples
1+2 12

1+2+5 19
1+2+6+7 2

1+4 2
4 10
5 5
7 6

4+7 4
6+7 1

Neutral 19

Total 80

Table 5.3: Details of instances of AUs in the dataset

Action Unit Number of Instances in Database
1 35
2 33
4 16
5 24
6 3
7 13

Neutral 19

Total 143

was placed on top of the monitor and an IBM Blue Eyes camera was placed under

the monitor. A FACS trained expert coded the videos of the face for various action

units and 80 frames were selected from these FACS coded videos of the kids. These

frames were selected manually to ensure that there were equal number of samples of

the di�erent facial action units from all the kids. Table 5.3 shows the details of the

dataset, which contains kids making real facial action units and various combinations.

The facial feature parameters were recovered from all these frames as described

in Chapter 4. The system is evaluated for recognition accuracy using leave-one-out

cross validation. The classi�ers were trained using the data from all but one subject

and reserving the one subject for testing. This was repeated for all 8 subjects in the
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Table 5.4: Leave-one-out recognition results for the facial actions

Action Number of Correct % Correct
Unit Samples Recognition Misses Recognition

AU 1 35 26 9 74.3%
AU 2 33 26 7 78.8%
AU 4 16 9 7 56.2%
AU 5 24 16 8 66.7%
AU 6 3 0 3 0%
AU 7 13 6 7 46.1%
Neutral 19 14 5 73.3%

Total 143 97 46 67.83%

database. The system could recognize each individual AU with an accuracy of 67.83%,

whereas an accuracy of 61.25% was obtained for all AU combinations. Table 5.4 shows

how well each individual AU was recognized and Table 5.5 shows how well each AU

combination was recognized. Although the results might not sound exceedingly good,

we need to keep in mind that these results are reported on a natural dataset; this set

is very di�erent from the datasets used to evaluate earlier systems. The videos have

a lot of occlusion and head movements, which makes the problem much harder than

on datasets where the images are pre-processed and manually normalized.

Table 5.5: Leave-one-out recognition results for action unit combinations

Actual # of Fully Partially % Full
AUs Samples Recognized Recognized Misses Correct
1+2 12 9 1 2 75%

1+2+5 19 11 3 5 57.9%
1+2+6+7 2 0 2 0 0%

1+4 2 0 2 0 0%
4 10 5 0 5 50%
5 5 5 0 0 100%
7 6 3 0 3 50%

4+7 4 2 1 1 50%
6+7 1 0 0 1 0%

Neutral 19 14 0 5 73.7%

Total 80 49 9 22 61.25%
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5.3 Detecting Head Nods and Head Shakes

Head nods and head shakes are nonverbal gestures and are used to ful�ll semantic

functions (e.g., nod head instead of saying yes), communicate emotions (e.g., nod-

ding enthusiastically with approval) and as conversational feedback (e.g, to keep the

conversation moving). A system that could detect head nods and head shakes would

be an important component in an interface that is expected to interact naturally

with people. This section describes our approach, which uses Hidden Markov Models

(HMMs) [26], to detect head nods and head shakes in real time.

Real-time detection of head nods and shakes is diÆcult, as the head movements

during a nod or shake are small, fast and jerky, causing many video-based face trackers

to fail. Our system uses the fact that it can robustly track the pupils. Once the

pupil positions are found, they are used to generate observation symbols based on

the direction in which the head moved. There are �ve observation symbols, which

correspond to the head moving up, down, left, right, or none. Current pupil positions

are compared with pupil positions in the previous frame. If the movement in the x

direction is greater than the movement in the y direction then the observation symbol

is labeled as left or right head movement depending upon which direction the head

moved. Similarly if the movement in the y direction is greater then the movement in

the x direction then the label is either up or down, depending upon the direction of

the head movement. When the movements in both the x and y directions are below

a certain threshold, then the symbol corresponding to none is generated.

The directions of the head movements in consecutive frames are used as a sequence

of observations to detect head gestures. Figure 5-1 shows typical patterns associated

with the head movements in a nod and a shake. We use a discrete HMM [26] to

detect when a head nod or a head shake occurs. Our pattern analyzer consists of two

HMMs, one corresponding to head nods and one corresponding to head shakes. Both

HMMs have three states and the observation set has �ve symbols corresponding to

the head moving up, down, left, right and none. The HMMs were trained using the

BaumWelch algorithm [26] . In the detection phase, the forward-backward procedure
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No Movement
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Down

Up

Right

Left

A Head Nod

A Head Shake

Figure 5-1: Typical sequences of head movements in a head nod and a head shake

[26] is used to compute the log likelihood for a sequence of N consecutive observations

based on the two HMMs. We compare and threshold the log likelihood to label the

sequence as a head nod or a head shake.

The performance of the system depends upon N, which is the number of obser-

vations that constitute a sequence to be tested. If N is small, then slow head nods

and shakes might not be detected. When N is large, then the detected head nods

and head shakes might linger for some time after they end. Our system uses N=10,

which we found suÆcient to detect slow as well as subtle head nods/shakes.

5.3.1 Evaluation and Results

Since the facial action database collected for the purpose of facial action recognition

had very few nods and shakes we had to build a di�erent database. To collect a

natural database for head nods and head shakes a Microsoft agent was programmed

to ask a number of factual questions (see Table 5.6), to which the subjects were asked

to answer with a head nod or a head shake. We used this strategy to avoid collecting
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Table 5.6: Ten questions asked by the agent

1. Are the instructions clear?
2. Are you male?
3. Are you female?
4. Are you a student at Media Lab?
5. Are you a student at Boston University?
6. Were you born in Boston?
7. Do you like Boston?
8. Do you like weather here in Boston?
9. A terrible thing just happened in Nepal recently.

Did you hear about it?
10. [Agent explains the event] Pretty bad isn't it?

data with exaggerated head nods and head shakes, which people often made when

asked to just nod/shake their head in front of a camera. Ten subjects, among whom

�ve were male, �ve female and two of them wore glasses, were recorded using the

infrared camera while they interacted with the agent. We expected to have a total

of 100 nods and shakes, but there were instances where the subjects responded to a

question with nodding/shaking their head twice. Also, some subjects used head nods

as conversational feedback to the agent. A total of 110 samples were collected with

62 head nods and 48 head shakes.

Lighting conditions varied due to changes in sunlight coming through a window at

di�erent times of day and due to the collection of data from subjects in two di�erent

rooms. To further complicate the data, a number of di�erent facial expressions and

movements like smiles, and frowns were made by the subjects in addition to the nods

and shakes. (Sometimes the agent elicited humor or other responses.) A random 40%

of the head nods and 40% of the head shakes were selected for training (see Table

5.7).

The recognition results are shown in Table 5.8 and 5.9. The system was imple-

mented on a Pentium-III 933 MHz Linux machine and a real-time recognition rate

of 78.46% was achieved at 30 fps for head nods and head shakes in the test dataset.

There were no confusions among head nods and head shakes, as the head movements
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in a head nod are very di�erent from those in a head shake. Most of the head nods

and head shakes that went undetected were the samples taken from the subjects that

wore glasses. The specular nature of the glasses made it diÆcult for the pupil tracker

to work well. Interestingly on one of the subjects with glasses, the pupil tracker

tracked a bright specular point on the glass frame and hence was able to detect most

of the head nods and head shakes. One of the head shakes that went undetected

was because the subject closed his eyes while making the gesture. There were some

false positives too. Some head nods were detected when the subject started laughing

with the head going up and down rhythmically. Sample demonstration movies can

be viewed at http://www.media.mit.edu/�ash/PUI01.

Table 5.7: Number of sequences in training and testing datasets

Train Test
Head nods 25 37
Head shakes 20 28

Table 5.8: Recognition results for the training set

Recognized Recognized
head nods head shakes Misses

Head nods 23 0 2
Head shakes 0 19 1

Recognition rate for head nods : 92.0%
Recognition rate for head shakes : 95.0%
Combined recognition rate : 93.34%
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Table 5.9: Recognition results for the testing set

Recognized Recognized
head nods head shakes Misses

Head nods 30 0 7
Head shakes 0 21 7

Recognition rate for head nods : 81.08%
Recognition rate for head shakes : 75.0%
Combined recognition rate : 78.46%
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Chapter 6

Conclusion and Future Work

6.1 Summary

This thesis demonstrates a fully automatic, real-time framework that can recognize

facial activity and head gestures. This framework can be used in scenarios where the

machine needs a perceptual ability to recognize, model and analyze the facial activity

in real time without any manual intervention. Rather than trying to recognize spe-

ci�c prototypical emotional expressions like joy, anger, surprise and fear, this system

recognizes the head gestures and the upper facial action units enumerated in Paul Ek-

man's Facial Action Coding System (FACS) [17]. This thesis describes some methods

that use statistical learning to �rst automatically recover parameters describing the

facial features, and then use these parameters to recognize facial activity and head

gestures. The datasets used for evaluations are completely natural and the thesis

demonstrates how computer vision and machine learning can be integrated to build

real-world applications.

The system �rst tracks the pupil positions robustly using the red-eye e�ect; these

positions are then used to localize eyes and eyebrows. The shape parameters corre-

sponding to these facial features are recovered using statistical learning techniques.

A real-time system, which uses Principal Component Analysis (PCA) to track upper

facial features, is implemented and is shown to work well. Once the parameters de-

scribing the facial features are recovered, they are used to recognize the facial actions
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and head gestures. Support vector machines (SVMs) are used to recognize facial ac-

tions and a recognition accuracy of 67.83% for each individual AU is reported. The

system can correctly identify all possible AU combinations with an accuracy of 61.25%

in a real and fully natural dataset. The head gestures are recognized using hidden

markov models (HMMs) and a recognition accuracy of 78.46% is reported, again on a

dataset which was completely natural. A lot of earlier work in face analysis reported

very high recognition results and at �rst glance the results reported here might seem

insigni�cant. But, we have to keep in mind that most of the earlier work has focused

on frontal video of the face shot in ideal conditions. The systems were trained and

tested at the apex of emotional expression and required human intervention. Con-

sidering that an accuracy of 75% among the human FACS coders is considered good,

our system performance is comparable to that of humans. In real-world applications,

like the learning companion, the face analysis system should be fully automatic and

should not require any human intervention, which is challenging due to the presence

of head movements, pose variations and occlusions in a natural scenario. This system

is evaluated in these challenging conditions and hence, the results reported are the

state of the art for natural human-computer interaction.

6.2 Application Scenarios

A system that can recognize facial actions and head movements in real time will �nd

applications in many areas. Some of the possible applications are described below:

� Learning Companion: A computerized learning companion needs to detect

the underlying a�ective state of the user in an unobtrusive manner. This system

is a part of the e�ort in the A�ective Computing group at the MIT Media Lab to

make a system that uses many di�erent behavioral signals to recognize a�ective

states like confusion, boredom etc.

� Man-Machine Interaction: The proposed framework can be an important

component in a system that aims to interact naturally with people. Applications
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that need to be adaptive to the users internal state would �nd this system useful.

The Gestures and Narrative Language group at the MIT Media Lab has started

using this system to build synthetic characters that are socially intelligent and

use head gestures and eye-gaze as social signals.

� Behavioral Studies: A lot of research is focused on studies related to the

facial behaviors. This system can be used as a tool that helps to annotate the

facial behavior automatically.

6.3 Future Work

The framework suggested in this thesis has several limitations. The system depends

heavily upon the robust pupil tracking, which currently breaks when the subjects are

wearing glasses. The pattern recognition to �nd pupils can be further re�ned to track

the pupils even when there are subjects with glasses. Since the system uses infrared

LEDs, it is unusable in the presence of a bright infrared source (like the sun) and

alternate pupil tracking techniques that do not rely on infrared should be explored.

It is also possible to re�ne the shape parameter extraction by taking into account

zoom and variations due to pose changes. Techniques like belief propagation should

be further explored to model the relationship between shape parameters and image

observations more accurately. Further, the temporal tracking can also be incorporated

to make the system more robust. The system can also be extended to track lower facial

features, like the lips and nose. In this work, the facial action units are classi�ed using

a bunch of separate SVMs. Techniques that fuse di�erent classi�ers can be explored

to improve the classi�cation. The system can be extended to recognize lower facial

action units as well. The video data used in this thesis was collected along with a lot

of di�erent signals and it is currently being annotated for a�ective states like interest

and boredom. This whole data needs to be analyzed to �gure out what behaviors are

correlated with which a�ective states and based upon this correlation we can build a

system that can recognize some emotional states relevant to learning. Currently the

results cannot be compared to other existing systems as our tests were performed on
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a fully natural database of videos with a lot of occlusions and head movements. For

a meaningful comparison all systems should be tested on the same database.

Although in this thesis we have demonstrated a system that can analyze the facial

activity, it is still very hard to make machines that can recognize the underlying

emotional and cognitive state. The relationship between the facial behavior and

the internal state is very complicated and is inuenced by many other factors. A

system that aims to be socially and emotionally intelligent should also look at factors

besides facial behavior. Nonetheless, the face is a very important channel that emits

signals related to the internal state and a lot of e�ort is being devoted to unravel this

relationship. Besides being used as a man-machine interface, this framework would

hopefully be useful to a lot of these research e�orts as well .
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