
Realtime Personal Positioning System for Wearable Computers

Hisashi Aokià, Bernt Schiele and Alex Pentland
MIT Media Laboratory

{aoki,bernt,sandy}@media.mit.edu

à Now at Toshiba Corporation R&D Center, Japan

Abstract

Context awareness is an important functionality for
wearable computers. In particular, the computer should
know where the person is in the environment. This paper
proposes an image sequence matching technique for the
recognition of locations and previously visited places. As
in single word recognition in speech recognition, a
dynamic programming algorithm is proposed for the
calculation of the similarity of different locations. The
system runs on a stand alone wearable computer such as
a Libretto PC. Using a training sequence a dictionary of
locations is created automatically. These locations are
then be recognized by the system in realtime using a hat-
mounted camera.

1. Introduction

Obtaining user location is one of the important
functions for wearable computers in two applications.
One is automatic self-summary, and the other is context-
aware user interface. In self-summary, the user is wearing
a small camera and a small computer, capturing and
recording every event of his/her daily life. The computer
might be able to summarize the recorded data and
eventually producing a "diary" [1,2]. For example, "At
8:15, left home. At 8:17, happened to meet Bob on the
street. At 8:44, arrived at the office…" The computer
might be also able to navigate the way to an unknown
place. Furthermore, important reminders might be shown
on one's worn display when the user is in a particular
location, such as supermarket [3,4,5,6].

As for context-awareness, Thad Starner et al.
discussed the following example [7]:

"For example, if the user is in his supervisor's
office, he is probably in an important meeting and
does not want to be interrupted for phone calls or
e-mail except for emergencies."

To realize these functions, a computer needs to know
user's locations. Outdoors, a Global Positioning System
(GPS) may track movements. Indoors, active tags may
take this role [8,9,10], however, sticking transmitters on
all the doors is obviously a difficult task, and GPS is not
available inside buildings.

The other approach to recognize location is to use a
camera. If barcodes are stuck on every door, the computer
may find the place easily by reading the code [10]. Even
if there is no barcode, object recognition or text
recognition may help the computer detect the place [11].
However, many of these computer vision approaches
analyze still pictures. So accurate segmentation of object
or character is needed. Starner et al. showed a place
detection method by introducing an HMM of transition of
rooms [7]. Clarkson et al. showed a method to segment
and label audio-video sequences from a worn camera and
microphone [12].

In this paper, we propose a realtime personal
positioning system that only uses a small wearable
camera as shown in Figure 1, and a standalone PC.

In previous work [13], we demonstrated that a
dynamic programming algorithm [14], can be used to
recognize not only the user's location but also the
approaching trajectory. In [13], we tested the accuracy of
the system with about 100-second video sequences that
were manually chosen and segmented. The images were
handled off line on an SGI workstation.

In this paper, practical changes have been done added
to the previous work to run on wearable computers.
Firstly, the proposed system runs at about 7 frames per
second, on a standalone PC such as a Toshiba Libretto
without wireless communication to remote database. This
overcomes delays caused by database reference over
limited bandwidth. Secondly, no segmentation of the
video sequences is needed. Thirdly, we introduce a
method to choose suitable trajectories for the "location
dictionary" automatically. And at the recognition stage,

the user doesn't need to tell the system when to look up
on the dictionary. Lastly, larger sets of training and test
data are used for the evaluation. The dictionary is
extracted from a real video sequence of 16 minutes and
30 seconds, and testing is done with independent video
sequences of a random walk of 7 minutes and 30
seconds. We introduce and use accuracy scales similar to
the ones used by [7].

Figure 1 A small wearable camera.

In the following section, an overview of the system is
given. In Section 3, the histogram calculation of each
frame and the similarity measurement of video segments
are explained. Then in Section 4, the method to
automatically select a location for the location dictionary
is discussed. The experimental results are shown in
Section 5.

2. System Overview

The system consists of a notebook PC, PCMCIA video
capture card and wearable camera (see Figure 1 for the
wearable camera). It completely runs in realtime on a
standalone PC and does not need access to a remote
server. User operates the system in two phases, which are
training phase and recognition phase. Between these two
phases, the location dictionary is calculated offline. At
training phase, while the user is walking about in a
building, a chromatic histogram is calculated and
recorded for every frame (Figure 2). After recording, the
program looks for suitable segments for the trajectory
dictionary in the histogram sequence. From the top of list,
trajectory segments are stored in the dictionary. This
process is discussed in Section 4.

screen

histogram file

trajectory A:
trajectory B:
trajectory C:

camera

histogram

dictionary

(off line)

PC

frame

Figure 2 Data flow at recording mode.

screen

camera

histogram buffer

look up

dictionary

result

PC

frame

Figure 3 Data flow at analysis mode.

Subsequently, the user walks about in the recognition
phase. Again the chromatic histogram is calculated and
matched to the trajectories in the dictionary. When a
trajectory is similar enough to the recent frames, the
system tells the user that he/she has walked through there
before, and shows him/her the image of the detected
location (Figure 3).

We use an ordinary notebook PC that has an Intel
Pentium 166 MHz processor and supports MMX
instructions. Training and test video sequences are
recorded by a camcorder to allow repetitious analysis and
evaluation. However, the system layout is compatible and
substitutable with a small computer such as Toshiba
Libretto and a camera shown in Figure 1. Libretto 100CT
has the same processor speed as the notebook PC we
used.

The program is written in C++ and partially in
assembly language to provide faster access to MMX
instructions. Since MMX supports 64-bit calculation at a
time, histogram and some other calculations can be done
as fast as 10 Hz.

realtime view

nearest
estimatimation

place ID

recognition

Figure 4 Screen shot of the proposed personal
positioning system.

3. Histogram Similarity

In order to implement a vision system onto a wearable
computer, we have to keep in mind the following:

- The system should be robust against brightness and
noise.

- Calculation for each frame should be fast enough in
order to enable high rate of sampling.

- Representation of each frame should be as compact
as possible.

The frame representation should not be affected by
brightness since lighting can be different from time to
time, day or night, even indoors. The second point
concerns speed. If the calculation is so heavy that the
system can handle only one frame in two seconds, the
image sequences can be very different even if the user is
passing through the same path at training phase and at test
phase. For example in Figure 5, dictionary trajectory for
location A is made out of frame (a), (c), (e), (g) and test
sequence is sampled as (b), (d), (f), (h). If the sampling
frequency is high enough, (a) and (b) are expected to be
similar and the system may succeed in matching the two
sequences. But if the gap between (a) and (c) is two
seconds, (a) and (b) can be quite different which will
cause the system to fail.

Frame features are stored in a location dictionary. This
means, due to limited space of storage, the smaller the
size of feature is, the more locations can be stored. Also,
the larger the size of the feature, the slower the
performance of the system will be.

a

a

b

b

c

c

d e f g h

0 1 2 3 4 5 6 7 sec.

Figure 5 Sparse sampling causes bad performances.

3.1 Hue histogram

We calculate hue histograms as frame features. Pixel
values are represented by hue (H), saturation (S), and
brightness (B). HSB, YUV and RGB units are converted
to each other. We linearly translated RGB unit to YUV,
and then calculated H value by taking the arctangent of
(U,V). The hue (H) histogram is used as a frame feature.
We calculate 36-bin histogram, resulting in a 36-
dimensional feature vector f for each frame.

Figure 6 Chromatic (hue) histogram

Figure 6 shows the example of chromatic histogram.
As seen in Figure 6, chromatic histogram is robust against
angle of camera and time of day [15].

A sequence of f represents sequentially incoming
video frames. We denote a sequence of f as F:

()essse fffF ,,, 1 K+
=

where fs is the chromatic histogram of the s-th frame and
f

e of the e-th frame.

In the system, a histogram element is represented in a
byte (8-bit). Therefore, f occupies 36 bytes in the
memory. The system uses a table of tangent value for 5,
15, 25, 35 degrees to calculate to which histogram bin a
pixel belongs. This part of the system is implemented in
MMX without using floating point calculation. This
calculation runs at about 10Hz on 166MHz PC.

3.2 Video segment similarity

Once F
se is calculated, similarity between two

segments is calculated in the following way. The distance
matrix between segment i and segment j is introduced as:

() () ()
()

() ()÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç

è

æ

=
+

+

jiji

ji

jijiji

eees

ss

sessss

ij

dd

d

ddd

ffff

ff

ffffff

D

,,

,

,,,

1

1

LL

MM

MO

L

 where

() 2
, lklkd ffff -=

If segment i and j are the same, diagonal elements in D
ij

are 0.

If the user passed through the same location at the
same speed in segments i and j, the diagonal elements in
D

ij are expected to be small.

If the user passed through the same location in
segments i and j, but the user was slower in j than in i, Dij

would have the form of Figure 7.

Therefore, the similarity between segments i and j
should be calculated along corresponding elements,
which are not necessarily on diagonals. We search a path
from the (1,1) element to the (ei-si,ej-sj) element of Dij

under the constraints:

- proceed from (m,n) only to (m+1,n) (m,n+1), or
(m+1,n+1).

- along the chosen path, the sum of the elements is
minimum.

0

0

0

0

0

63 122 629

45 102 526

32 50 164

40 96 334

711 73

segment i

se
gm

en
t

j

Figure 7 Difference in speed.

The path chosen in the above way is called minimal
path, and the sum of elements along the minimal path is
denoted as T ij . For example, if Dij is;

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

=

0297

2543

9230

ijD

Here, the minimal path is (1,1)-(2,2)-(3,3)-(3,4) and T ij

is 0+4+2+0 = 6. (2,2) is chosen even if it is greater than
(1,2) or (2,1), since along paths via (1,2) or (2,1), the
sums of elements are greater than via (2,2). Dynamic
programming frequently used in speech recognition can
be used to find the minimal path [16]. Dynamic
programming finds the correspondence of frames in
segments even if speed is different or not stable.

The proposed system uses 40 frames for each
trajectory or video segment. When the location dictionary
has 16 trajectories, the dictionary actually holds 40x16 =
640 histograms. When a sequence of histograms for a
location P is denoted as Fdict(P), and a sequence of
histograms for recent frames at time t is denoted as F

test(t),
we note the following incremental comptation of D:

() ()() () ()() ()testlkttestPdictklttestPdict el <=
+

- 1,1DD

Therefore, only (Ddict(P)test(t))k,e(test) is calculated whenever
the system receives a new frame. The cost per frame is
one histogram calculation, 40x16 = 640 similarity
(Ddict(1..16)test(t))k,40 calculation, and 16 searches for minimal
paths.

4. Trajectory Dictionary

Not all locations are suitable for the trajectory
dictionary. For example, when a video segment is
recorded while the user walks 20 feet in a monotonous

hallway, and another segment is recorded of another 20
feet of the same hallway, it is impossible to differentiate
the two sequences. Only discriminative segments are
suitable to be chosen for the trajectory dictionary.
Therefore, a measurement of distinctiveness will be
introduced in the following.

We calculate T ij for all the combinations of segments
in the test data with segments partially overlap to each
other. Distinctiveness measurement (M) for segment i is
introduced as follows:

å=
jall

ijiM
_

)segmentsnumber_of_(T

In the training data, the same location can be visited
more than once. Ideally, segments from the same location
should be eliminated from the calculation of Mi.
However, the number of segments to be eliminated is
relatively small with respect to all the segments. And it is
difficult to eliminate them without having a priori
association of location and training video sequence.

After Mi is calculated, the system shows the distinctive
locations by using the order of M. This list can contain
segments too close to each other. For example, if the
segment from frame 301 to 340 is on the top of list,
segment from 302 to 341 may be listed on the second or
third. Therefore by eliminating overlapping segments
from the list, the system creates a trajectory dictionary of
the most distinctive locations in the environment.

5. Experiments

A training video sequence and a test sequence are
taken in the MIT Media Lab Building. The training
sequence is 16 minutes and 30 seconds in duration, and
the test sequence has 7 minutes and 30 seconds. Both
sequences are taken by walking mainly around the third
floor. However, in both cases, the user walked on the
other floors too. Sequences are taken at the different days.
The training sequence is taken at night and the test
sequence is taken during the day. Trajectories for the
dictionary are only chosen in the third floor. Figure 8
shows an approximate topological map of the third floor
and trajectories chosen for the dictionary. These
trajectories are chosen from the top of the list as
described in Section 4. The order is 13, 9, 11, 4, 14, 5, 8,
6, 10, 16, 2, 1, 7, 15, 12, and 3. Trajectory 8 and 16 are
the same, but taken at different visits in the training
sequence. The dictionary is made by picking up 9 to 16
trajectories from the top of list.

1

615

11
7

16
8

3 2

10
13

14 4

9 5

12

Figure 8 The floor plan and chosen trajectories.

Figure 9 shows the path of the test walk. The solid line
indicates the first part of the test walk (3 minutes). The
broken line indicates the last part (2 minutes 30 seconds).
Between these two parts, the user went down to the
ground level by stairs, walked around the ground level,
went down to the lower level by stairs and came back to
the third floor (2 minutes). These three parts are
consecutive. Figure 10 shows detection result of the
system. Numbers in normal letter indicate correct
detection. Reversed letters indicate substitution error.
Blank black box indicate deletion error. Numbers in box
indicate insertion error. Blank areas are the gaps between
two trajectories in the dictionary. For example, trajectory
6 on the first column is correctly detected at anytime.
Trajectory 7 on the second column is correctly detected
when the dictionary has 16 trajectories. When the
dictionary has 15,14 or 13 trajectories, the system fails to
detect (deletion error). The dictionary doesn't contain
trajectory 7 when it has 12 or fewer trajectories, therefore,
failures of detecting trajectory 7 are not considered as
errors any more.

As for the second part of test walk (out of the third
floor), nothing is detected as expected.

To the ground level
From the lower level

A

B

C

Figure 9 The test walk.

Table 1 shows the numerical evaluation of the system.
We use similar evaluation as Starner et al. [7]. T and G
are the total numbers of trajectories and gaps in the test
sequence. G includes the gap between trajectories 4 and
13 (the second part of test sequence, of the third floor). D
(deletions) is the number of trajectories not detected, S
(substitution) is the number of trajectories falsely
detected, I (insertions) is the count of false detection in
gaps, which are not supposed to be detected. Accuracy
AccT and AccG are given as follows:

G

IG
Acc

T

SDT
Acc

G

T

-

=

--

=

T T-D-S D S AccT%

16 12 9 3 0 75.0
15 11 8 3 0 72.7

14 11 8 3 0 72.7

13 11 7 3 1 63.6

12 9 7 2 0 77.8

11 8 6 2 0 75.0

10 7 6 1 0 85.7

9 6 5 1 0 83.3

G G-I I AccG%

16 12 2 10 16.7
15 12 1 11 8.3

14 12 5 7 41.7

13 12 6 6 50.0

12 10 4 6 40.0

11 9 4 5 44.4

10 8 4 4 50.0

9 7 4 3 57.1

Table 1 System performance (#: number of trajectories
in the dictionary)

6

6 7 16 3 1 6 7 4 13 16 813 9 11 4 14 5 8 6
10 16 2 1 7 15 12 3

13 9 11 4 14 5 8 6
10 16 2 1 7 15 12

13 9 11 4 14 5 8 6
10 16 2 1 7 15

13 9 11 4 14 5 8 6
10 16 2 1 7

13 9 11 4 14 5 8 6
10 16 2 1

13 9 11 4 14 5 8 6
10 16 2

13 9 11 4 14 5 8 6
10 16

13 9 11 4 14 5 8 6
10

6 16 16 1 6 7 4 13 8

6 16 16 1 6 7 4 13 8 8

6 16 1 6 7 4 13 8 8

6 16 1 6 4 13 8 8

6 16 16 6 4 13 8

6 16 16 6 4 13 8 8

6

16

15

14

13

12

11

10

9

number of trajectories in the dictionary

6 4

time (not to scale)trajectories
in the dictionary

13 8

13 517 6 47 2 38,16 8,16

7

167

8

8

8

8

3

2

82163157

82161577

8216157

82167

8216

216

816

8

8

8

Errors:
substitution insertions

deletions
7 8

1616

Figure 10 The results.

As described in [7], AccG can be negative when many
insertions are detected. D and I are related to each other.
When the parameters are set to minimize I, D goes up.

Table 1 shows that the system performs best when 9
or 10 trajectories are chosen for the dictionary.

As seen in Figure 10, location 5 has not been detected.
This is because door A was open when training data was
taken, and it was closed during testing. The system is
confused when the user passes through from point B to C.
This is because the color of the whole image is stable for
4-5 seconds in this area, and the path from B to C is
similar to 6,7 and 15. The other confusion around
2,3,8,16 was caused by the same reason. There was no
salient object in this hallway and this caused the
mismatch. This means, 6,7,11 and 15 are very salient to
any other segments except 6,7,11 and 15. The same holds
for 2,3,8, and 16.

6. Results

We proposed a location recognition system which runs
on a wearable computer. Recognition is done in realtime
on a standalone PC, and the system doesn't require any
wireless communication. The experiments showed that
the system recognized locations in relatively good
accuracy from the previous work. In addition to the
proposed method, we suppose that the introduction of a
topologic grammar will solve many problems especially
during the insertions. Currently, we are also working on
different means to automatically choose the location
dictionary. We are considering more discriminative frame
representations by changing adding frame features and/or
using multiple subregions of each frame.

References

[1] M. Lamming and M. Flynn. Forget-me-not: intimate
computing in support of human memory. In
Proceedings of FRIEND21 International Symposium
on Next Generation Human Interface. pp. 125-128.
1994.

[2] B. Rhodes and T. Starner. Remembrance agent: a
continuously running automated information
retrieval system. In Proceedings of the First
International Conference on the Practical Application
of Intelligent Agents and Multi Agent Technology
(PAAM '96).

[3] M. Weiser. The computer of the twenty-first century.
Scientific American, 1991.

[4] S. Kakez, C. Vania, and P. Bisson. Virtually
documented environment. In Proceedings of the First

International Symposium on Wearable Computers
(ISWC '97).

[5] J. Rekimoto and K. Nagao. The world through the
computer: computer augmented interaction with real
world environment. ACM UIST'95, 1995.

[6] J. Rekimoto and K. Nagao. Agent augmented reality:
a software agent meets the world. In Proceedings of
Second International Conference on Multiagent
Systems (ICMAS-96).

[7] T. Starner, B. Schiele, and A. Pentland. Visual
contextual awareness in wearable computing. In
Proceedings of the Second International Symposium
on Wearable Computers (ISWC '98).

[8] R. Want and A. Hopper. Active badges and personal
interactive computing objects. IEEE Trans. on
Comsumer Electronics, 38(1):10-20, Feb. 1992.

[9] J. Orwant For want of a bit the user was lost: Cheap
user modeling. IBM Systems Journal, 35(3), 1996.

[10] T. Starner, S. Mann, B. Rhodes, J. Healey, D. Kirsh,
R.W. Picard, and A. Pentland. Augmented reality
through wearable computing. Presence 6(4): 386-
398, 1997.

[11] B. Schiele and J. Crowley. Probabilistic object
recognition using mutltidimensional receptive field
histogram. International Conference on Pattern
Recognition (ICPR '96) B:50-54, 1996.

[12] B. Clarkson and A. Pentland. Unsupervised
clustering of ambulatory audio and video. In
Proceedings of the International Conference on
Acoustics, Speech and Signal Processing (ICASSP
'99).

[13] H. Aoki, B. Schiele, and A. Pentland. Recognizing
personal location from video. In Proceedings of the
Perceptual User Interfaces Workshop (PUI '98).

[14] H.Ney. The use of a one-stage dynamic programming
algorithm for connected word recognition. Readings
in Speech Recognition: 188-196. 1990.

[15] H. Aoki, S. Shimotsuji, and O. Hori. A shot
classification method of selecting effective key-
frames for video browsing. In Proceedings of ACM
Multimedia 96: 1-10. 1996.

[16] H. Sakoe and S. Chiba. Dynamic programming
algorithm for spoken word recognition. Readings in
Speech Recognition: 159-165. 1990.

