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Abstract

A smart environment is one that is able to identify people, interpret their actions, and react

appropriately. Thus, one of the most important building blocks of smart environments is a person

identi�cation system. Face recognition devices are ideal for such systems, since they have recently

become fast, cheap, unobtrusive, and, when combined with voice-recognition, are very robust against

changes in the environment. Moreover, since humans primarily recognize each other by their faces and

voices, they feel comfortable interacting with an environment that does the same. We present a brief

summary of the history and mathematical framework of face recognition, the current state of the art,

and present-day commercial systems. We then describe developments towards future applications:

building interactive smart environments, augmenting human senses, skills and memory with wearable

recognition technology, and ultimately making computers so usable, portable and intuitive that they

become ubiquitous | the so-called \fourth generation" of computing.

1 Introduction

Smart environments, wearable computers, and ubiquitous computing in general are thought to be the
coming `fourth generation' of computing and information technology [1, 2, 3]. Because these devices
will be everywhere | clothes, home, car, and o�ce, their economic impact and cultural signi�cance are
expected to dwarf previous generations of computing. At a minimum, they are among the most exciting
and economically important research areas in information technology and computer science.

However, before this new generation of computing can be widely deployed we must invent new methods
of interaction that don't require a keyboard or mouse | there will be too many small computers to
instruct them all individually. To win wide consumer acceptance such interactions must be friendly and
personalized (no one likes being treated like just another cog in a machine!), which implies that next-
generation interfaces will be aware of the people in their immediate environment and at a minimumknow
who they are.

1.1 Why Face Recognition?

Given the requirement for determining people's identity, the obvious question is what technology is best
suited to supply this information? There are many di�erent identi�cation technologies available, many
of which have been in wide-spread commercial use for years. The most common person veri�cation and
identi�cation methods today are Password/PIN (Personal Identi�cation Number) systems, and Token
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systems (such as your driver's license). Because such systems have trouble with forgery, theft, and lapses
in users' memory, there has developed considerable interest in biometric identi�cation systems, which use
pattern recognition techniques to identify people using their physiological characteristics. Fingerprints
are a classic example of a biometric; newer technologies include retina and iris recognition.

While appropriate for bank transactions and entry into secure areas, such technologies have the dis-
advantage that they are intrusive both physically and socially. They require the user to position their
body relative to the sensor, and then pause for a second to `declare' themselves. This `pause and declare'
interaction is unlikely to change because of the �ne-grain spatial sensing required. Moreover, there is a
`oracle-like' aspect to the interaction: since people can't recognize other people using this sort of data,
these types of identi�cation do not have a place in normal human interactions and social structures.

While the `pause and present' interaction and the oracle-like perception are useful in high-security
applications (they make the systems look more accurate), they are exactly the opposite of what is required
when building a store that recognizes its best customers, or an information kiosk that remembers you,
or a house that knows the people who live there. Face recognition from video and voice recognition have
a natural place in these next-generation smart environments | they are unobtrusive (able to recognize
at a distance without requiring a `pause and present' interaction), are usually passive (do not require
generating special electro-magnetic illumination), do not restrict user movement, and are now both low-
power and inexpensive. Perhaps most important, however, is that humans identify other people by their
face and voice, therefore are likely to be comfortable with systems that use face and voice recognition.

2 History and Mathematical Framework

Twenty years ago the problem of face recognition was considered among the hardest in Arti�cial Intelli-
gence (AI) and computer vision. Surprisingly, however, over the last decade there have been a series of
successes that have made the general person identi�cation enterprise appear not only technically feasible
but also economically practical.

The apparent tractability of face recognition problem combined with the dream of smart environments
has produced a huge surge of interest from both funding agencies and from researchers themselves. It
has also spawned several thriving commercial enterprises. There are now several companies that sell
commercial face recognition software that is capable of high-accuracy recognition with databases of over
1,000 people.

These early successes came from the combination of well-established pattern recognition techniques
with a fairly sophisticated understanding of the image generation process. In addition, researchers realized
that they could capitalize on regularities that are peculiar to people, for instance, that human skin colors

lie on a one-dimensional manifold (with color variation primarily due to melanin concentration), and
that human facial geometry is limited and essentially 2-D when people are looking toward the camera.
Today, researchers are working on relaxing some of the constraints of existing face recognition algorithms
to achieve robustness under changes in lighting, aging, rotation-in-depth, expression and appearance
(beard, glasses, makeup) | problems that have partial solution at the moment.

2.1 The Typical Representational Framework

The dominant representational approach that has evolved is descriptive rather than generative. Training
images are used to characterize the range of 2-D appearances of objects to be recognized. Although
initially very simple modeling methods were used, the dominant method of characterizing appearance
has fairly quickly become estimation of the probability density function (PDF) of the image data for the
target class.

For instance, given several examples of a target class 
 in a low-dimensional representation of the image
data, it is straightforward to model the probability distribution function P (xj
) of its image-level features

2



x as a simple parametric function (e.g., a mixture of Gaussians), thus obtaining a low-dimensional,
computationally e�cient appearance model for the target class.

Once the PDF of the target class has been learned, we can use Bayes' rule to perform maximum
a posteriori (MAP) detection and recognition. The result is typically a very simple, neural-net-like
representation of the target class's appearance, which can be used to detect occurrences of the class, to
compactly describe its appearance, and to e�ciently compare di�erent examples from the same class.
Indeed, this representational framework is so e�cient that some of the current face recognition methods
can process video data at 30 frames per second, and several can compare an incoming face to a database
of thousands of people in under one second | and all on a standard PC!

2.2 Dealing with the Curse of Dimensionality

To obtain an `appearance-based' representation, one must �rst transform the image into a low-dimensional
coordinate system that preserves the general perceptual quality of the target object's image. This trans-
formation is necessary in order to address the `curse of dimensionality'. The raw image data has so many
degrees of freedom that it would require millions of examples to learn the range of appearances directly.

Typical methods of dimensionality reduction include Karhunen-Lo�eve transform (KLT) (also called
Principal Components Analysis (PCA)) or the Ritz approximation (also called `example-based represen-
tation'). Other dimensionality reduction methods are sometimes also employed, including sparse �lter
representations (e.g., Gabor Jets, Wavelet transforms), feature histograms, independent components
analysis, and so forth.

These methods have in common the property that they allow e�cient characterization of a low-
dimensional subspace with the overall space of raw image measurements. Once a low-dimensional rep-
resentation of the target class (face, eye, hand, etc.) has been obtained, standard statistical parameter
estimation methods can be used to learn the range of appearance that the target exhibits in the new,
low-dimensional coordinate system. Because of the lower dimensionality, relatively few examples are
required to obtain a useful estimate of either the PDF or the inter-class discriminant function.

An important variation on this methodology is discriminative models, which attempt to model the
di�erences between classes rather than the classes themselves. Such models can often be learned more
e�ciently and accurately than when directly modeling the PDF. A simple linear example of such a
di�erence feature is the Fisher discriminant. One can also employ discriminant classi�ers such as Support
Vector Machines (SVM) which attempt to maximize the margin between classes.

3 Person Identi�cation via Face Recognition

The current literature on face recognition contains thousands of references, most dating from the last few
years. For an exhaustive survey of face analysis techniques the reader is referred to Chellappa et al. [4],
and for current research the reader is referred to the IEEE Conferences on Automatic Face and Gesture
Recognition.

Research on face recognition goes back to the earliest days of AI and computer vision. Rather than
attempting to produce an exhaustive historical account, our focus will be on the early e�orts that had
the greatest impact on the community (as measured by, e.g., citations), and those few current systems
that are in wide-spread use or have received extensive testing.

3.1 History of Face Recognition

The subject of face recognition is as old as computer vision, both because of the practical importance
of the topic and theoretical interest from cognitive scientists. Despite the fact that other methods of
identi�cation (such as �ngerprints, or iris scans) can be more accurate, face recognition has always
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A face bunch graph is 
created from 70 face 
models to  obtain a  
general representation of 
the face  

Given an image the face is 
matched to the face bunch 
graph to find the fiducial 
points

An image graph is created 
using elastic graph 
matching and compared to 
databse of faces for 
recognition

Figure 1: Face Recognition using Elastic Graph Matching

remains a major focus of research because of its non-invasive nature and because it is people's primary
method of person identi�cation.

Perhaps the most famous early example of a face recognition system is due to Kohonen [5], who

demonstrated that a simple neural net could perform face recognition for aligned and normalized face
images. The type of network he employed computed a face description by approximating the eigenvectors
of the face image's autocorrelation matrix; these eigenvectors are now known as `eigenfaces.'

Kohonen's system was not a practical success, however, because of the need for precise alignment and
normalization. In following years many researchers tried face recognition schemes based on edges, inter-
feature distances, and other neural net approaches. While several were successful on small databases
of aligned images, none successfully addressed the more realistic problem of large databases where the
location and scale of the face is unknown.

Kirby and Sirovich (1989) [6] later introduced an algebraic manipulation which made it easy to directly
calculate the eigenfaces, and showed that fewer than 100 were required to accurately code carefully aligned
and normalized face images. Turk and Pentland (1991) [7] then demonstrated that the residual error
when coding using the eigenfaces could be used both to detect faces in cluttered natural imagery, and to
determine the precise location and scale of faces in an image. They then demonstrated that by coupling
this method for detecting and localizing faces with the eigenface recognition method, one could achieve
reliable, real-time recognition of faces in a minimally constrained environment. This demonstration that
simple, real-time pattern recognition techniques could be combined to create a useful system sparked an
explosion of interest in the topic of face recognition.

3.2 Current State of the Art

By 1993 there were several algorithms claiming to have accurate performance in minimally constrained
environments. To better understand the potential of these algorithms, DARPA and the Army Research
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Figure 2: Face Recognition using Local Feature Analysis

Laboratory established the FERET program with the goals of both evaluating their performance and
encouraging advances in the technology [8].

At the time of this writing, there are three algorithms that have demonstrated the highest level of
recognition accuracy on large databases (1196 people or more) under double-blind testing conditions.
These are the algorithms from University of Southern California (USC) [9], University of Maryland
(UMD) [10], and the MIT Media Lab [11]. All of these are participants in the FERET program. Only
two of these algorithms, from USC and MIT, are capable of both minimally constrained detection and
recognition; the others require approximate eye locations to operate. A fourth algorithm that was an
early contender, developed at Rockefeller University [12], dropped from testing to form a commercial
enterprise. The MIT and USC algorithms have also become the basis for commercial systems.

The MIT, Rockefeller, and UMD algorithms all use a version of the eigenface transform followed by
discriminative modeling. The UMD algorithm uses a linear discriminant, while the MIT system, seen
in Figure 3, employs a quadratic discriminant. The Rockefeller system, seen in Figure 2, uses a sparse
version of the eigenface transform, followed by a discriminative neural network. The USC system, seen
in Figure 1, in contrast, uses a very di�erent approach. It begins by computing Gabor `jets' from the
image, and then does a `exible template' comparison between image descriptions using a graph-matching
algorithm.

The FERET database testing employs faces with variable position, scale, and lighting in a manner
consistent with mugshot or driver's license photography. On databases of under 200 people and images
taken under similar conditions, all four algorithms produce nearly perfect performance. Interestingly,
even simple correlation matching can sometimes achieve similar accuracy for databases of only 200 people
[8]. This is strong evidence that any new algorithm should be tested with at databases of at least 200
individuals, and should achieve performance over 95% on mugshot-like images before it can be considered
potentially competitive.

In the larger FERET testing (with 1166 or more images), the performance of the four algorithms is
similar enough that it is di�cult or impossible to make meaningful distinctions between them (especially
if adjustments for date of testing, etc., are made). On frontal images taken the same day, typical �rst-
choice recognition performance is 95% accuracy. For images taken with a di�erent camera and lighting,
typical performance drops to 80% accuracy. And for images taken one year later, the typical accuracy is
approximately 50%. Note that even 50% accuracy is 600 times chance performance.
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Figure 3: Face Recognition using Eigenfaces

3.3 Commercial Systems and Applications

Currently, several face-recognition products are commercially available. Algorithms developed by the
top contenders of the FERET competition are the basis of some of the available systems; others were
developed outside of the FERET testing framework. While it is extremely di�cult to judge, three systems
| Visionics, Viisage, and Miros | seem to be the current market leaders in face recognition.

Visionics' FaceIt face recognition software is based on the Local Feature Analysis algorithm developed
at Rockefeller University. FaceIt is now being incorporated into a Close Circuit Television (CCTV) anti-
crime system called `Mandrake' in United Kingdom. This system searches for known criminals in video
acquired from 144 CCTV camera locations. When a match occurs a security o�cer in the control room
is noti�ed.

Viisage, another leading face-recognition company, uses the eigenface-based recognition algorithm
developed at the MIT Media Laboratory. Their system is used in conjunction with identi�cation cards
(e.g., driver's licenses and similar government ID cards) in many US states and several developing nations.

Miros uses neural network technology for their TrueFace face recognition software. TrueFace is used
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by Mr. Payroll for their check cashing system, and has been deployed at casinos and similar sites in many
US states.

4 Novel Applications of Face Recognition Systems

Face recognition systems are no longer limited to identity veri�cation and surveillance tasks. Growing
numbers of applications are starting to use face-recognition as the initial step towards interpreting human
actions, intention, and behavior, as a central part of next-generation smart environments. Many of the
actions and behaviors humans display can only be interpreted if you also know the person's identity,
and the identity of the people around them. Examples are a valued repeat customer entering a store,
or behavior monitoring in an eldercare or childcare facility, and command-and-control interfaces in a
military or industrial setting. In each of these applications identity information is crucial in order to
provide machines with the background knowledge needed to interpret measurements and observations of
human actions.

4.1 Face Recognition for Smart Environments

Researchers today are actively building smart environments (i.e. visual, audio, and haptic interfaces to
environments such as rooms, cars, and o�ce desks) [1, 2]. In these applications a key goal is usually to give
machines perceptual abilities that allow them to function naturally with people | to recognize the people
and remember their preferences and peculiarities, to know what they are looking at, and to interpret their
words, gestures, and unconscious cues such as vocal prosody and body language. Researchers are using
these perceptually-aware devices to explore applications in health care, entertainment, and collaborative
work.

Recognition of facial expression is an important example of how face recognition interacts with other
smart environment capabilities. It is important that a smart system knows whether the user looks
impatient because information is being presented too slowly, or confused because it is going too fast
| facial expressions provide cues for identifying and distinguishing between these di�erent states. In
recent years much e�ort has been put into the area of recognizing facial expression, a capability that
is critical for a variety of human-machine interfaces, with the hope of creating a person-independent
expression recognition capability. While there are indeed similarities in expressions across cultures and
across people, for anything but the most gross facial expressions analysis must be done relative to the
person's normal facial rest state | something that de�nitely isn't the same across people. Consequently,
facial expression research has so far been limited to recognition of a few discrete expressions rather than
addressing the entire spectrum of expression along with its subtle variations. Before one can achieve a
really useful expression analysis capability one must be able to �rst recognize the person, and tune the
parameters of the system to that speci�c person.

4.2 Wearable Recognition Systems

When we build computers, cameras, microphones and other sensors into a person's clothes, the computer's
view moves from a passive third-person to an active �rst-person vantage point (see Figure 4) [3]. These
wearable devices are able to adapt to a speci�c user and to be more intimately and actively involved in
the user's activities. The �eld of wearable computing is rapidly expanding, and just recently became a
full-edged Technical Committee within the IEEE Computer Society. Consequently, we can expect to
see rapidly-growing interest in the largely-unexplored area of �rst-person image interpretation.

Face recognition is an integral part of wearable systems like memory aides, remembrance agents,
and context-aware systems. Thus there is a need for many future recognition systems to be inte-
grated with the user's clothing and accessories. For instance, if you build a camera into your eye-
glasses, then face recognition software can help you remember the name of the person you are looking
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Figure 4: Wearable Face Recognition System

Fusion of Speech and Face Recognition

Cs  = Speech Confidence
CF  = Face Confidence
Xs   = Speech Identity
XF   = Face Identity
X     = Identity

P(X) = P(X|Xs)P(Xs|Cs)P(Cs) + 
           P(X|XF)P(XF|CF)P(CF)

Cs

Xs

X

CF

XF

A simple Bayes Net is 
used for combining 
knowledge from each 
classifier to produce a 
final decision

P(X|Xi)  = Classifier's probability for a person
P(Xi|Ci) = Confidence in the classifier
P(Ci)     = Prior on confidence

Figure 5: Multi-modal Person Recognition System

at by whispering their name in your ear. Such devices are beginning to be tested by the US Army for
use by border guards in Bosnia, and by researchers at the University of Rochester's Center for Future
Health for use by Alzheimer's patients (see http://wearables.www.media.mit.edu/projects/wearables &
http://www.futurehealth.rochester.edu).

5 Future of Face Recognition Technology

Face recognition systems used today work very well under constrained conditions, although all systems
work much better with frontal mug-shot images and constant lighting. All current face recognition
algorithms fail under the vastly varying conditions under which humans need to and are able to identify
other people. Next generation person recognition systems will need to recognize people in real-time and
in much less constrained situations.

We believe that identi�cation systems that are robust in natural environments, in the presence of
noise and illumination changes, cannot rely on a single modality, so that fusion with other modalities is
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essential (see Figure 5). Technology used in smart environments has to be unobtrusive and allow users
to act freely. Wearable systems in particular require their sensing technology to be small, low powered
and easily integrable with the user's clothing. Considering all the requirements, identi�cation systems
that use face recognition and speaker identi�cation seem to us to have the most potential for wide-spread
application.

Cameras and microphones today are very small, light-weight and have been successfully integrated
with wearable systems. Audio and video based recognition systems have the critical advantage that
they use the modalities humans use for recognition. Finally, researchers are beginning to demonstrate
that unobtrusive audio-and-video based person identi�cation systems can achieve high recognition rates
without requiring the user to be in highly controlled environments [13].

6 Conclusion

Face recognition technology has come a long way in the last twenty years. Today, machines are able
to automatically verify identity information for secure transactions, for surveillance and security tasks,
and for access control to buildings etc. These applications usually work in controlled environments and
recognition algorithms can take advantage of the environmental constraints to obtain high recognition
accuracy. However, next generation face recognition systems are going to have widespread application in
smart environments | where computers and machines are more like helpful assistants.

To achieve this goal computers must be able to reliably identify nearby people in a manner that �ts
naturally within the pattern of normal human interactions. They must not require special interactions
and must conform to human intuitions about when recognition is likely. This implies that future smart
environments should use the same modalities as humans, and have approximately the same limitations.
These goals now appear in reach | however, substantial research remains to be done in making per-
son recognition technology work reliably, in widely varying conditions using information from single or
multiple modalities.
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