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Abstract: A new technique for sound-scene analysis is presented.  This technique operates by discovering
common modulation behavior among groups of frequency subbands in the autocorrelogram domain.  The
analysis is conducted by first analyzing the autocorrelogram to estimate the amplitude modulation and
period modulation of each channel of data at each time step, and then using dynamic clustering techniques
to group together channels with similar modulation behavior.  Implementation details of the analysis
technique are presented, and its performance is demonstrated on a test sound.

1. Introduction

The autocorrelogram and similar representations of subband periodicity are now established as the
preferred computational representation of early sound processing in the auditory system.  This is primarily
due to the accuracy with which these models explain the available experimental data on pitch perception.
Although there is still debate regarding the strengths and weaknesses of different periodicity
representations  (Irino and Patterson 1996; Slaney 1997; de Cheveigné 1998; Kaernbach and Demany
1998), it is now relatively uncontested that some sort of temporal periodicity detection is applied to the
output of the cochlear filterbank in the human listening process.

A remarkable correspondence between visual motion in the autocorrelogram and the perception of auditory
scene analysis was reported some time ago (Duda, Lyon and Slaney 1990).  However, as yet there has been
relatively little attempt to operationalize this discovery in a computational auditory-scene-analysis (CASA)
system.   The present paper describes initial experiments in building a CASA system around the principle
of detecting subband comodulation in the autocorrelogram domain.  The literature on correlogram-based
scene analysis is reviewed, and those few approaches to using the correlogram for purposes other than pitch
analysis highlighted.  Then, the correlation-comodulation algorithm is described.  Finally, results on test
signals are presented and the directions of future research discussed.

2.  Background

Most of the early attempts to construct computational source-grouping systems were based on sinusoidal
analysis (Quatieri and McAulay 1998).  Details on these sorts of systems are now widely available in the
literature (for example, Brown and Cooke 1994; Ellis 1994; Rosenthal and Okuno 1998) and will not be
discussed further.

The concept of subband periodicity detection was first suggested as a model for the pitch of a sound by
Licklider (1951).  Licklider’s model was based on a network of delay lines and coincidence detectors
oriented in a two-dimensional representation. Since Licklider's formulation, this technique has been
rediscovered several times, first by van Noorden (1983), who cast it in terms of the calculation of
histograms of neural interspike intervals in the cochlear nerve. In the last decade, the model was
reintroduced by Slaney and Lyon (1990), Meddis and Hewitt (1991), and others; it has since come to be
called the autocorrelogram method of pitch analysis and is today the preferred model. The autocorrelogram
is the 3-D volumetric function mapping a cochlear channel, temporal time delay (or lag), and time to the
amount of periodic energy in that band at that lag and time.
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Weintraub (1985) used a dynamic programming framework around Licklider's autocorrelation model to
separate the voices of two talkers whose voices interfere in a single-channel recording.  In his model, he
attempted to track the pitch of the two voices, and allocate the different channels of the cochleagram to
each of the two voices.   Summerfield, Lea, and Marshall (1990) presented a convolution-based strategy for
separating multiple static vowels in the correlogram. By convolving a two-dimensional wavelet kernel
possessing the approximate shape of the “spine and arches” of the pitch structure in a correlogram frame
with an image representing the whole frame, they showed that multiple pitches with differing F0 could be
recognized. The stimuli used were simple synthesized vowels with F0 not harmonically related.  Mellinger's
(1991) thesis on music analysis contains a brief exploration of motion-based separation in the correlogram,
but the techniques he developed for autocorrelogram analysis were never integrated into the main thrust of
his system.  He was interested in applying the results of image-processing research to sound-analysis
systems; in particular, his thesis presented a number of edge detection and flow detection wavelet kernels
that were applied to cochleagrams or correlograms.

The approaches of Summerfield et al. and Mellinger were notable for attempting to make use of the entire
autocorrelogram volumetric function.  In contrast, the primary approach has more recently been based on
inspection of the summary autocorrelation (the (time × periodicity) function given by summing the
autocorrelogram across frequencies).  The autocorrelogram model of pitch has been extended to allow the
separation of simultaneous sounds (Meddis and Hewitt 1992; de Cheveigné 1993).  In its simplest form,
such a system operates with a residual-driven approach: determine the strongest pitch in the signal by
inspecting the summary autocorrelation; remove the filter channels whose behavior can be explained as
resulting from this pitch; determine the strongest pitch in the residual; and so on.

Ellis' dissertation (1996) described a system that could analyze sound and segregate perceptual components
from noisy sound mixtures, such as city-street ambience. As part of this approach, he developed a novel
sound representation termed the weft (Ellis and Rosenthal 1998).  The weft allows simultaneous
representation of pitch and spectral shape for multiple harmonic sounds in a complex sound scene. He
provided algorithms for extracting wefts from autocorrelograms in a residue-driven approach, as well as
details on their use in sound-scene analysis.  Building on the work of Ellis, Martin (1996a; 1996b)
developed a music-analysis system for the separation of sound that used the correlogram as the front end.
His system used the blackboard model to manage multiple hypotheses and data analysis in a prediction-
driven framework.  Martin demonstrated the performance of his system by analyzing and correctly
transcribing four-voice piano music.

In addition to these scene-analysis systems, there have been a few notable attempts to extract features other
than pitch from the autocorrelogram.  Leman (1995) found cues for musical tonality, Scheirer (1997; 1998)
demonstrated the use of the slowed-down autocorrelogram for tempo analysis, and Martin (1999) has
recently demonstrated the extraction of features suitable for robust identification of musical instruments.

Although the approach outlined below has not yet been validated with data from psychoacoustic
experiments, this step would be necessary in order to further the case that it is a useful model.  Darwin and
Carlyon (1995) review experiments that suggest the role that frequency and amplitude modulation play in
source grouping, although there is not a great deal of literature on this topic.

2.1. Some properties of the autocorrelogram
The grouping approach described in Section 3 is based on modulation properties of the autocorrelogram
that are briefly described in this section. This discussion is applicable to periodicity-analysis methods other
than autocorrelation; the modulation behavior described here holds for any analysis technique that begins
with an array of bandpass filters and then detects periodicity in their output.

As a sound signal evolves over time, the response pattern of each channel of the autocorrelogram
modulates in two ways.  First, it undergoes amplitude modulation in response to changing power in the
frequency subband of the signal associated with that channel.  As the power increases, the energy output of
the cochlear filter increases.  Second, it undergoes period modulation in response to changes in the
frequency of stimulation dominating that cochlear channel.

The bandpass filters comprising the cochlear filterbank can only produce output that is similar to a
modulated sinusoid, where the frequency of the sinusoidal carrier is near the center frequency of the filter
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and the modulation function is very low-passy relative to the carrier.  In the frequency region where phase-
locking to the waveform occurs, the half-wave rectification and smoothing processes change the shape of
the wave function, but not the underlying periodicity.  Thus, for any input signal, the autocorrelation
function in the low-mid subbands must be roughly periodic with period near that corresponding to center
frequency of the subband.

As a time-varying signal evolves, the particular frequency dominating the filter channel – that is, acting as
the carrier signal – changes; this change is reflected in corresponding changes in the periodicity of the
autocorrelation function.  The changes in the autocorrelation function are a sort of modulation, termed
period modulation for the purposes of the present paper.  A simple example is presented in Figure 1.
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Figure 1: Autocorrelation of a windowed, modulated sinusoid.  As the frequency of output from a
particular filter channel changes, the period of the autocorrelation function of that output changes.  The
change in dominant frequency becomes a period modulation in the autocorrelation.

Period modulation of the autocorrelation signal in a subband does not only occur in response to frequency
modulation of the input signal.  It occurs any time that the frequency that is dominating the channel
changes.  This can happen due to amplitude modulation of the spectral components of the input as well as
its frequency modulation.  Amplitude modulation and period modulation are not independent; as the
frequency dominating a channel changes, it moves closer or farther from the center frequency of the
channel, and thus leads to changing output response from the filter.

For simple signals such as those presented below, the changes in periodicity are smooth and easy to
analyze.  More complex signals present more complex changes in dominant periodicity and are left for
future work.

3. Approach

The goal of the system described in the present paper is to allocate channels from a cochlear model into a
partitioned representation suitable for further analysis.  As such, it is only one component of a complete
CASA system.  There are no innovations presented regarding the cochlear model or the periodicity
analysis; therefore, these components of the approach will only be discussed briefly.  Further, although
incorporation of top-down information (Ellis 1996; Slaney 1998) is necessary in order to build robust
CASA systems, it is not explicitly treated here.

The goal of this work is not to separate sound in the sense of creating multiple output sounds that can be
summed to reconstruct a scene.  Rather, it is to partition the sound data in the correlogram domain so that
feature analysis can be undertaken.  Many researchers today consider the sound-separation problem to be
more of an engineering problem than a scientific one (Martin, Scheirer and Vercoe 1998).  The human
auditory system does not separate signals in the sense of actually extracting multiple, distinct time-domain
sound objects from an acoustic stimulus.  Rather, human listeners have the remarkable ability to understand
sounds in spite of the noise and overlapping sounds present in the world.  The focus of the present research,
like the ability of the human listener, is sound understanding without separation.

The principle underlying the operation of the system is that articulated by Duda et al. (1990): parts of the
sound scene that belong together can be seen to undergo coherent modulation when the correlogram is
visualized as a moving picture.  Slaney and Lyon (1991) produced an excellent “hearing demo reel”
videotape that effectively illustrates this principle for many sorts of sounds, including multiple talkers,
speech-in-noise, and symphonic music.  These demonstrations suggest that the source-partitioning problem
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might be solved by estimating modulation in the subbands of the autocorrelogram and using that
information to group the cochlear channels.

The correlogram-comodulation analysis system is divided into five rough stages that will be described
more fully in the subsequent sections.  They are: frequency analysis, rectification, and smoothing of sound
through models of the cochlea and inner hair cells; subband periodicity analysis with the autocorrelogram;
subband modulation detection; clustering of the modulation data to discover comodulation patterns; and
feature analysis of the partitioned sound objects.  The third and fourth steps make up the new approach,
therefore the description is most detailed there.

3.1. Filterbank and periodicity detection
The front-end system used for this research is very similar to others reported in the literature.  The
particular implementation was programmed by Martin (1999), following the work of Slaney (Slaney 1994)
and Ellis (1996).  The cochlear filterbank is modeled as a set of 54 eighth-order gammatone filters; this
model for the cochlea was introduced by Patterson (Patterson et al. 1992).  The phase-locking behavior of
the inner hair cells in the cochlea is modeled with half-wave rectification and smoothing.  The output of the
cochlear filterbank and rectification processing for a synthetic sound signal, the “McAdams oboe”
(McAdams 1984) is shown in Figure 2.
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Figure 2: The cochleagram of the “McAdams oboe” sound (McAdams 1984).  This sound is comprised
of the first ten harmonics of a 220 Hz fundamental with coherent vibrato (10% depth, 4 Hz) applied to
the even harmonics only.  The percept is that of a clarinet-like sound with pitch at 220 Hz and a
soprano-like sound with pitch at 440 Hz.  The main panel shows the broad frequency resolution of the
filterbank; the vibrato in the second and fourth harmonics can be easily seen.  The small panel presents
a closer view of the time range around 280 ms; phase-locking in the middle frequencies and lack of
phase-locking in the high frequencies is observed.

Periodicity detection is performed using the running log-lag autocorrelogram.  In earlier implementations
of the autocorrelogram (Slaney 1994), it was calculated on a frame-by-frame basis, by windowing the half-
wave rectified output signals of the cochlear filterbank and using the FFT to compute the autocorrelation.
More recently, Ellis (1996) and Martin (1999) have suggested using a running autocorrelation rather than a
windowing operation.  This eliminates edge effects (the decay shown in Figure 1) caused by windowing the
signal before calculation, and it also makes it easier to sample the lag axis nonlinearly.

Ellis (1996) observed that as human pitch perception is roughly logarithmic with frequency, it makes more
sense to sample the lag axis with logarithmic spacing.  He termed this the log-lag autocorrelogram.  In
Martin’s implementation of the log-lag autocorrelogram, delay lines are used to calculate the continuous
running autocorrelation without an analysis window.  The delay line outputs are computed using fractional
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delay filters, and after multiplication with the undelayed signal, each lag signal is smoothed with a lowpass
filter. This model is much more computationally intensive than Slaney’s FFT-based model, but has key
modulation properties that will become clear in the next section.  Three frames of the autocorrelogram of
the synthetic test sound are shown in Figure 3.  For the analysis presented here, the autocorrelogram is
sampled at a 100 Hz frame rate.
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Figure 3: Three frames of the log-lag autocorrelogram of the McAdams oboe.  For each frame, the
main panel shows a constant-time slice through the autocorrelogram volume, calculated as described in
the main text; the bottom panel shows the summary autocorrelogram, which is the sum across
frequencies of the periodic energy at each lag (the sum is calculated in the linear-energy domain and
then converted to dB scale for presentation); and the right panel shows the energy spectrum, which is
the zero-lag energy in each channel.  The three frames highlight different portions of the vibrato phase
for the even harmonics; the first shows a point in time at which the even harmonics are sharp relative to
the odd harmonics, the second at which the even harmonics are in tune with the odd harmonics, and the
last when the even harmonics are flat.  Readers familiar with pitch-based source separation techniques
will observe the difficulty in distinguishing the in-tune from detuned partials using only the information
in the summary autocorrelation.

3.2. Modulation Analysis
In this section, new techniques for analyzing the modulation behavior of channels of the autocorrelogram
are presented.  The purpose of modulation analysis is to convert the dynamic motion of the
autocorrelogram into static features that are suitable for inclusion in a pattern-analysis system.

On a linear lag axis, a simple frequency modulation such as a vibrato corresponds to a period modulation
that can be described as stretching and squashing.  That is, when the frequency of the signal stimulating a
particular filter channel increases, the output of the filter also increases in frequency.  The autocorrelation
function thus is squashed, with peaks closer together, as in Figure 1.  As the signal frequency decreases, the
output of the filter decreases in frequency and the peaks of the autocorrelation function are stretched.

The utility of the log-lag autocorrelogram for detecting period modulation now becomes evident.  When the
lag axis is scaled logarithmically, the stretch-squash effect of period modulation becomes a simple shift to
the left or right, which is easily to analyze. Slices of the log-lag autocorrelogram for two cochlear channels
(one steady, and one undergoing period modulation) for the synthetic sound used in the previous figures are
shown in Figure 4.
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Figure 4: Two slices through the autocorrelogram of the McAdams oboe sound.  Each panel shows the
autocorrelation response of a single filter over time.  The left panel corresponds to a cochlear filter with
center frequency 198 Hz; thus, this channel is dominated by the steady partial at 220 Hz in the sound.
The right panel shows the response of a cochlear filter with center frequency 446 Hz; thus, this channel
is dominated by the partial that frequency-modulates about 440 Hz.  Since the lag axis is
logarithmically scaled, the period modulation is reflected as linear shifting behavior over time, not
stretching and squashing—all of the curves in the right panel are parallel.

In the log-lag domain, cross-correlation can be used to detect period modulation.  At each time step, the
autocorrelation function in each channel is cross-correlated with the autocorrelation function in the same
channel from a previous time step.  If the channel is period-modulating, the peak of this cross-correlation
function is off-center.  Peak-picking suffices to determine the period modulation, at least for the simple
examples tested so far.

The finite length of the autocorrelation vector provides an implicit windowing function in the cross-
correlation.  That is, the running autocorrelation is only calculated over a finite set of lags, and so it can be
viewed as the application of a rectangular (boxcar) window function to the true, infinitely-long,
autocorrelation function.  This windowing function biases the peak estimate in the cross-correlation
towards the center, since it has a triangular autocorrelation function.  In order to provide accurate estimates,
the cross-correlation is unbiased by multiplication with the inverse triangle window before peak-picking.

The domain of period-modulation values is lag scale per second.  At each time step, the autocorrelation
function is scaled by some ratio, which may be detected by looking for shifts in the log-lag
autocorrelogram.  The primary region of interest in this domain is  -2 % to +2% lag scale per 10 ms frame;
modulations more extreme than these tend to be hidden by the center-bias of the windowed cross-
correlation. Very small modulations, between –0.2 % and +0.2 % per frame, are difficult to detect due to
the lack of high-frequency information in the autocorrelation function.

The output of the period-modulation detection is shown in Figure 5.  This figure, a period modulogram,
shows the two-dimensional function mapping cochlear channel and time into the period-modulation
estimation in that channel at that time.
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Figure 5: The period modulogram, showing the period modulation of each channel at each time step.
The period modulation is measured with cross-correlation as described in the text; the legend at right
shows the correspondence between the gray level in the main panel and the degree of period
modulation.  Period modulation is measured in lag scale per time; a value of 1.5 % means that the lag
axis in that channel at that time must be stretched by a factor of 1.5 % (that is, a multiplicative scaling
of 1.015) in order to approximate the lag axis in the same channel at the next time step.  Similarly, a
value of -1.5 % corresponds to a multiplicative squashing factor of 0.985. Compared to Figure 3, the
channels responding to the vibrato are clearly visible.

The amplitude modulation in each channel is also measured, by dividing the zero-delay autocorrelation—
the energy—in each channel by the zero-delay autocorrelation from a previous frame.  The energy scale
per frame is greater than 0 dB when the channel is increasing in power, and less than 0 dB when the
channel is decreasing in power.  The output of the amplitude-modulation detection process—the amplitude
modulogram—is shown in Figure 6.  There is no explicit amplitude modulation in this signal after the
onset, so all of the amplitude modulation arises from coupling to frequency modulation.

Time (ms)

C
en

te
r 

fr
eq

ue
nc

y 
(H

z)

100 200 300 400 500

49

88

157

280

500

890

1587

2828

5039

8979

A
m

pl
itu

de
 m

od
ul

at
io

n 
(s

ca
le

 p
er

 fr
am

e,
 d

B
)

-3

-2

-1

0

1

2

Figure 6: The amplitude modulogram, showing the amplitude modulation of each channel at each time
step. Amplitude modulation is described as a scaling factor per frame; if the value is 2 dB, then the
energy in that channel at that time step is 2 dB greater than it was at the previous time step.  When the
figure is compared to Figure 5, the correlation between period modulation and amplitude modulation is
observed.  The structure in the very low and very high channels is spurious; there is very little energy in
these channels as can be seen in the energy profiles plotted in Figure 3, and so the amplitude
modulation measurement there is not meaningful.
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There is potentially more information to be retrieved from the modulation patterns by using more than one
previous frame; that is, by cross-correlating the autocorrelation function at time t in a channel with that of
the same channel at 1 ms, 10 ms, and 100 ms previous.  With appropriate smoothing, this sort of multiscale
processing could give information on coherent motion at many time resolutions, from glottal jitter to
syllabic or note-to-note transitions.  The modulation plots shown here were computed using a 40 ms (four
frame) time step; this delay was chosen empirically to give the best visual results.

3.3. Dynamic clustering
The modulation-detection principles described in the previous section convert the dynamic motion of the
correlogram into static features, and the cross-channel concept of frequency modulation into the within-
channel concept of period modulation.  The next step in comodulation analysis is to determine which
channels are modulating in the same way.  There is a substantial literature on clustering, grouping, and
modeling the distribution of data scattered in a multidimensional feature space.  In the case here, the feature
space has only two dimensions; each channel at each time is mapped to an ordered pair (p,a), where p is the
current period modulation and a the current amplitude modulation.  Within each frame, only those channels
containing significant acoustic power (at least –15 dB compared to the channel with maximum power, see
Figure 3) are considered.  Thus, at each time step there are at most 54 ordered pairs, one for each cochlear
channel, but usually less, since not every channel has energy at every time.  Figure 7 shows a scatterplot of
the feature space at four points in time.
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Figure 7: Scatterplots of the modulation data shown in Figure 5 and Figure 6 at four different time
steps.  Each point corresponds to the behavior of one cochlear channel at one point in time.  The latest
three frames may be compared to the three frames in Figure 3 (the time markings differ due to the delay
in computing modulation).  In these frames, the even harmonics are becoming respectively sharper, not
changing, and flatter with respect to the odd harmonics.

The ISODATA technique (Therrien 1989) is used to compute the dynamic clustering of the data.
ISODATA is a heuristic procedure which iteratively assigns data points into groups based on the distance
between the cluster means.  It is controlled by parameters that specify the approximate number of groups
and how large (in terms of spread in the feature space) they are allowed to be.  Figure 8 shows the same
time steps as Figure 7, with the cluster assignments determined by ISODATA.  In this case, the control
parameters were fixed and empirically chosen.  The data have been successfully partitioned into clusters
based on comodulation patterns.
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Figure 8: Assignment of the modulation data into clusters.  The clustering is performed automatically
by a slightly-modified version of the ISODATA procedure (see text).  Each cluster corresponds to a
group of cochlear channels that are doing the same thing at a particular time.

The standard ISODATA algorithm can only be used on individual frames of data, since it has no notion of
time-dependent cluster.  Thus, for use in this system, the ISODATA procedure is modified slightly.  At
each time step, the cluster distribution at the previous time step is given as an a priori cluster distribution.
Doing this encourages ISODATA to maintain continuity within clusters.  Also, at each time step, the
ISODATA control parameters could be modified depending on how successful the clustering was at the
previous time step.  If the clustering was an excellent model of the data, then the control parameters could
be adjusted to make it more difficult to change the clustering in the subsequent time step.  This dynamic
adjustment proved unnecessary for the example presented here.

These modifications were undertaken somewhat empirically and have not been thoroughly tested on sound
scenes with different properties.  It would probably be desirable to move away from ISODATA to more
sophisticated dynamic clustering models.  There are many such models in the literature.  In particular,
many operate on a more formalized maximum-likelihood Bayesian model.  They are thus more easily
modified to use constraints such as the desired inertia of clusters over time in a principled way,  by
expressing of the constraints as probabilistic priors.

3.4. Feature analysis
Based on the dynamic clusters formed in the previous stage of analysis, the sound scene can be segmented
into a number of acoustic objects.  Each object is coherent in dynamic correlogram motion; that is, at each
time step, each channel within an object is modulating in the same way in period and amplitude.

Figure 9 shows the object masks that result from the cluster analysis in the previous section. The
partitioning technique follows Bregman’s principle of exclusive allocation (Bregman 1990, p. 12); each
cochlear channel at each time is assigned only to one object. As can be seen in this figure, the energy in the
scene has been assigned to two objects, one corresponding to the odd harmonics, which are static, and one
corresponding to the even harmonics, which are modulated. Although this scene is composed only of two
objects, there is no apparent reason that the technique should not work for more than two objects, as long as
each has independent and coherent modulation properties.
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Figure 9: Object masks showing the segmentation of the scene into objects.  In each panel, the dark
regions of the time-frequency plane correspond to energy that undergoes coherent modulation in the
correlogram.  The left panel corresponds to the static (odd) partials of the McAdams oboe sound; the
right panel to the modulating (even) partials. The high frequencies, low frequencies, and occasional
middle frequencies are not assigned to any object because they have relatively little energy.

It may be observed in Figure 9 that the high midrange (around 1500-3000 Hz) is assigned inconsistently,
first to one object, then the other.  In this frequency region, the frequency modulation causes the
modulating partials to interfere with the static partials, in different cochlear channels..  Thus, the sum of the
two objects manifest as regular patterns of within-channel beating.  Techniques for analyzing this behavior
have not yet been determined; currently, the present technique seems to work robustly only for partials that
are resolved by the filterbank.

Using the object masks in Figure 9, we can perform feature estimation on each object separately.  For
example, we can calculate the pitch of each object, using the standard summary-autocorrelation procedure,
but at each time step, only considering the channels that are associated with one object or the other.  The
pitch-tracks of the two objects are shown in Figure 10.  Similar feature analysis could be used to produce
estimates of broad spectral shape, formant positions, or other desired acoustic features.  Unlike most of the
scene-analysis techniques put forth recently in the literature, the scene analysis and pitch estimation are not
performed jointly.  Rather, the scene analysis step in this model precedes the pitch estimation, thus
avoiding the problematic situation (such as for the McAdams oboe example presented here) in which the
overlap of two objects blurs the pitches in the summary autocorrelation.  By using the dynamic motion cues
in the periodicity representation, the sources can be separately analyzed without using pitch or harmonicity
as a grouping heuristic.
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Figure 10: Pitch tracks of the two objects shown in Figure 9.  After a brief startup transient, the pitches
of the two perceptual objects in the scene are correctly determined.

4. Summary and Future Work

This paper has presented a new technique for segmenting a sound scene into acoustic objects.  The
principle of correlogram comodulation detection is identified as a useful heuristic for computational
auditory-scene-analysis systems.  By analyzing the modulation cues within the correlogram or equivalent
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subband periodicity representations, the dynamic behavior of the correlogram may be converted into static
features suitable for cluster analysis.  The scene can be partitioned into objects, and the features of the
objects analyzed, based on automatic grouping of the cochlear channels by their modulation properties.
The utility of the technique was demonstrated by testing it on the “McAdams oboe” sound, a sound that is
difficult to analyze using frame-by-frame correlogram techniques.

The material discussed in the present paper should be considered a work in progress.  The results tend to
raise more questions than they answer.  In particular, more evaluation of the period-modulation heuristic is
needed.  It is important to discover whether this technique may apply to noisy sounds and sound scenes that
are more complex than the example presented here.  This technique seems only applicable to the analysis of
periodic and quasi-periodic sounds; thus, in a full CASA system intended to deal with a variety of sound
sources, it would need to be augmented by other techniques more suited to noisy sounds and sound
textures.

The question of proper time scale for modulation analysis has not yet been addressed; the examples
presented here were created with an arbitrarily chosen time scale.  Further expansion on this topic could
include the analysis of multiscale processing in the same framework.

In the long run, if this technique proves useful for the computational analysis of different sorts of sound
scenes, it will be natural to examine the psychoacoustic hypotheses that it puts forth.  For example, the
model cannot use periodicity modulation to group cochlear channels in which phase-locking to the signal is
not present.  There is little data in the psychoacoustic literature on this grouping behavior in human
listeners.  Also, the model strongly argues for an exclusive-allocation approach to scene analysis.  If
experiments were to reveal “conjoint” (in the language of Summerfield et al. 1990) grouping strategies in
the human auditory system, the model presented here would have to be greatly revised to account for such
data.

The long-term goal of the research that includes the present paper is to create computational music
perception systems that can robustly make judgments (such as genre classification) on real examples taken
directly from compact-disc recordings.  By examining the perception of music as a serious problem in
auditory scene analysis, the normally disparate fields of music perception and psychacoustics may be
drawn together.  Such a prospect requires re-evaluation of models, systems, and theories from psychology,
psychoacoustics, and musical signal processing (Scheirer 1996; Martin et al. 1998).
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