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Abstract

We develop a method for offline and online recognition of
the emotional state of a person deliberately expressing one
of eight emotions. In terms of offline recognition, this pa-
per presents recent improvements to a method previously
developed in the MIT Media Lab, which involved recog-
nition using physiological data collected from an actress
over many weeks. The improvements involve (1) more ro-
bust handling of day-to-day variations in the data, (2) use
of longer episodes of data, (3) use of heart-rate informa-
tion, extracted from a blood volume pressure sensor, and
(4) the use of alternative features. The success rates thus
increased from 50.62% to 81.25% for all 8 emotions. Ad-
ditionally, the method has been adapted to run online, so
that it can be used for real-time applications. The perfor-
mance of the real-time version of the algorithm currently
lags 8% behind that of the corresponding offline version,
but we continue to investigate improvements.

The success rates obtained with the physiological-based
recognition are now comparable to those obtained in facial
and vocal expression recognition, and offer complementary
information or an alternative to such means. The recogni-
tion results demonstrated here indicate that there is signif-
icant information in physiological signals for classifying the
affective state of a person who is deliberately expressing a
small set of emotions.

1 Introduction

This paper addresses emotion recognition, specifically the
recognition by computer of affective information expressed
by one person over many weeks, including lots of day-to-
day variations. Recognition is run on a set of features ex-
tracted from physiological signals, currently measured from
the surface of the skin of a person expressing one of eight
emotions. We show improvements over previous results in
offline recognition [12]. We also describe a new adapta-
tion of the method that runs online, bringing it closer to a
number of real-life real-time applications.

This research is part of a larger effort aimed at giving
computers the skills of “emotional intelligence,” such as
the ability to recognize a person’s emotions and to respond
appropriately to those emotions. Recognition of emotional
information is a key part of human-human communication,
and is therefore expected to be necessary in building natu-
ral and intelligent human-computer interaction. Software
agents and other adaptive interfaces can benefit from rec-
ognizing which behaviors cause states such as joy or anger
in their users. If a particular behavior pleases a user, it
might be reinforced, whereas if a behavior makes a user

angry, then the behavior probably needs modification. The
idea is that the agent should be adapting to the user with
minimal effort on the user’s part. Users naturally express
emotions to the computer, and can do so without having
to interrupt the session to click on a special menu or other
artificial feedback mechanism. As the computer recognizes
the natural expression of the user, it receives information
that helps it better adapt to serve that user.

2 Background

A summary of related literature, as well as the experiment,
methodology and some of the previous results are men-
tioned here. They can all be found in greater length in
[12].

The research described here focuses on recognition of
eight emotional states during deliberate emotional expres-
sion by an actress. These states were: Neutral (no emo-
tion) (N), Anger (A), Hate (H), Grief (G), Platonic Love
(P), Romantic Love (L), Joy (J), and Reverence (R). The
specific states one would want a computer to recognize will
depend on the particular application. The eight emotions
used in this research are intended to be representative of
a broad range, which can be described in terms of the
“arousal-valence” space commonly used by psychologists
[7]. The arousal axis ranges from calm and peaceful to
active and excited, while the valence axis ranges from neg-
ative to positive. For example, anger was considered high
in arousal, while reverence was considered low. Love was
considered positive, while hate was considered negative.

There has been prior work on emotional expression
recognition from speech and from image and video; this
work, like ours, has focused on deliberately expressed emo-
tions. The problem is a hard one when you look at the few
benchmarks which exist. In general, people can recognize
affect in neutral-content speech with about 60% accuracy,
choosing from among about six different affective states
[10]. Computer algorithms can match this accuracy but
only under more restrictive assumptions, such as when the
sentence content is known. Facial expression recognition
is easier, and the rates computers obtain are higher: from
80-98% accuracy when recognizing 5-7 classes of emotional
expression on groups of 8-32 people [13, 3]. Facial expres-
sions are easily controlled by people, and easily exagger-
ated, facilitating their discrimination.

Emotion recognition can also involve analyzing posture,
gait, gesture, and a variety of physiological features in ad-
dition to the ones described in this paper. Additionally,
emotion recognition can involve prediction based on cogni-
tive reasoning about a situation, such as “That goal is im-
portant to her, and he just prevented her from obtaining it;



therefore, she might be angry at him.” Such a framework
for analysis of affective dynamics has been developed under
Affect Control Theory [5, 11]. The best emotion recogni-
tion is likely to come from pattern recognition and reason-
ing applied to a combination of all of these modalities, in-
cluding both low-level signal recognition, and higher-level
reasoning about the situation [8].

For the first part of the research described here, four
physiological signals of an actress were recorded during de-
liberate emotional expression. The signals measured were
electromyogram (EMG) from the jaw, representing muscu-
lar tension or jaw clenching, blood volume pressure (BVP)
and skin conductivity (GSR) from the fingers, and respi-
ration from chest expansion. Data was gathered for each
of the eight emotional states for approximately 3 minutes
each. This process was repeated for several weeks. The
four physiological waveforms were each sampled at 20 sam-
ples a second. The experiments use 2000 samples per sig-
nal, for each of the eight emotions, gathered over 20 days.
Hence there are a total of 32 signals a day, and 80 signals
per emotion.

Let one of the four raw signals, the digitized EMG, BV P,
GSR, and Respiration waveforms, be designated by S. The
signal is gathered for 8 different emotions each session, for
20 sessions. Let S, represent the value of the n'® sample
of the raw signal, where n = 1...N and N = 2000 sam-
ples. Let Sy, refer to the normalized signal (zero mean,
unit variance), formed as:
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where p and o are the means and standard deviations
explained below. We extract 6 types of features for each
emotion, each session:

1. the means of the raw signals (4 values)
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2. the standard deviations of the raw signals (4 values)
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3. the means of the absolute values of the first differences
of the raw signals (4 values)
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4. the means of the absolute values of the first differences
of the normalized signals (4 values)
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5. the means of the absolute values of the second differ-
ences of the raw signals (4 values)
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6. the means of the absolute values of the second differ-
ences of the normalized signals (4 values)
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Therefore, each emotion is characterized by 24 features,
corresponding to a point in a 24-dimensional space. The
classification can take place in this space, in an arbitrary
subspace of it, or in a space otherwise constructed from
these features. The total number of data in all cases is 20
points per class for each of the 8 classes, 160 data points
in total. Note that not all the features are independent; in
particular, two of the features are nonlinear combinations
of the other features.

2.1 Methodology

There is no guarantee that the features chosen above are
all appropriate for emotion recognition. Nor is it guar-
anteed that emotion recognition from physiological signals
is possible. Furthermore, a very limited number of data
points—20 per class—is available. Hence, we expect that
the classification error may be high, and may further in-
crease when too many features are used. Therefore, reduc-
tions in the dimensionality of the feature space need to be
explored, among with other options. We focus on three
methods for reducing the dimensionality, and evaluate the
performance of these methods.

The Sequential Floating Forward Search (SFFS)
method [9] is chosen due to its consistent success in pre-
vious evaluations of feature selection algorithms, where it
has recently been shown to outperform methods such as
Sequential Forward and Sequential Backward Search (SFS,
SBS), Generalized SFS and SBS, and Max-Min, [6] in sev-
eral benchmarks. Of course the performance of SFFS is
data dependent and the data here is new and difficult;
hence, the SFFS may not be the best method to use.
Nonetheless, because of its well documented success in
other pattern recognition problems, it will help establish
a benchmark for the new field of emotion recognition and
assess the quality of other methods.

The SFFS method takes as input the values of n features.
It then does a non-exhaustive search on the feature space
by iteratively adding and subtracting features. It outputs
one subset of m features for each m, 2 < m < n, together
with its classification rate. The algorithm is described in
detail in [9].

Fisher projection (FP) [2] is a well-known method of
reducing the dimensionality of the problem in hand, which
involves less computation than SFFS. The goal is to find
a projection W of the data to a space of fewer dimensions
than the original where the classes are well separated. Due
to the nature of the Fisher projection method, the data
can only be projected down to ¢ —1 (or fewer if one wants)
dimensions, assuming that originally there are more than
¢ — 1 dimensions and ¢ is the number of classes. It is im-
portant to keep in mind that if the amount of training
data is inadequate, or the quality of some of the features
is questionable, then some of the dimensions of the Fisher
projection may be a result of noise rather than a result of
differences among the classes. In this case, Fisher might
find a meaningless projection which reduces the error in




the training data but performs poorly in the testing data.
For this reason, projections down to fewer than ¢ — 1 di-
mensions are also evaluated in the paper. Note that if
the number of features n is smaller than the number of
classes ¢, the Fisher projection is meaningful only up to at
most n — 1 dimensions. Therefore in general the number
of Fisher projection dimensions d is 1 < d < min(n,c)— 1.
For example, when 24 features are used on all 8 classes, all
d =[1,7] are tried. When 4 features are used on 8 classes,
all d = [1, 3] are tried.

As mentioned above, the SFFS algorithm proposes one
subset of m features for each m, 2 < m < n. There-
fore, instead of feeding the Fisher algorithm with all the
24 features, we can use the subsets that the SFFS algo-
rithm proposes as our input to the Fisher Algorithm. Note
that the SFFS method is used here as a simple preproces-
sor for reducing the number of features fed into the Fisher
algorithm, and not as a classification method. We call this
hybrid method SFFS-FP.

The Maximum a Posteriori (MAP) classification is used
for all Fisher Projection methods, while the SFFS came
with a built-in k-nearest-neighbor classifier. The leave-one-
out method is chosen for cross validation because of the
small amount of data available.

2.2 Results

Some relevant results from the classification algorithms are
shown in Table 1. All methods performed significantly bet-
ter than random guessing, indicating that there is emo-
tional discriminatory information in the physiological sig-
nals.

The classification rates obtained by SFFS and SFFS-FP
are reported in Table 1.

3 Day dependence

As mentioned previously, the data were gathered in 20 dif-
ferent sessions, one session each day. During the classifi-
cation procedure, we noticed high correlation between the
values of the features of different emotions in the same
session. In previous work [12] we first quantified this phe-
nomenon by building a day (session) classifier and then
used it to improve the emotion classification results by in-
cluding the day information in the features. Here we first
summarize the previous results and then present a more
robust handling of the day information.

3.1 Day classifier

We use the same set of 24 features, the Fisher algorithm,
and the leave-one-out method as before, only now there
are ¢ = 20 classes instead of 8. Therefore the Fisher pro-
jection is meaningful from 1 to 19 dimensions. The result-
ing “day classifier” using only the Fisher projection and
the leave-one-out method with MAP classification, yields
a classification accuracy of 133/160 (83%), an extremely
high success rate.

3.2 The Day Matrix

According to the results of the previous section, the fea-
tures extracted from the signals are highly dependent on
the day the experiment was held. Therefore, we would like
to augment the set of features to include both the Original

Number Without Day Matrix With Day Matrix
of SFFS T Fisher | SFFS-FP | Fisher | SFFS-FP

Features (%) (%) (%) (%) (%)
24 40.62 40.00 46.25 49.38 50.62

Table 1: Classification rates for 8 emotions from all 20
days (160 data points in total) of Data Set A and different
methods used. The Day Matrix adds 19 features to the
data fed to the Fisher Algorithm.

set of 24 features and a second set incorporating informa-
tion on the day the signals were extracted. A Day Matrix
was constructed, which included a 20-number long vector
for each emotion, each day. It was the same for all emotions
recorded the same day, and differed among days. We chose
the 20-number vector as follows: For all emotions of day ¢
all entries are equal to 0 except the ¢’th entry which is equal
to a given constant C'. This gave a 20x20 diagonal matrix
for each emotion. The problem was that when the feature
space included the Day Matrix, the Fisher projection al-
gorithm encountered manipulations of a matrix which was
close to singular. We could still proceed with the calcula-
tions but they were less accurate. Here we present a more
robust version where the vector is 19-number long and does
not encounter singularity problems.

Let us think of a case where the data come from only
2 different days and only 1 feature is extracted from the
data (This is the only way the following manipulations can
be visualized, but it can trivially extend to more features).
Although the feature values of one class are always related
to the values of the other classes in the same way (for
example the mean EMG for anger may always be higher
than the mean EMG for Joy), the actual values may be
highly day-dependent (Fig. la). To alleviate this problem
an extra dimension can be added before the features are
fed to the Fisher Algorithm (Fig. 1b). If the data came
from 3 different days, 2 extra dimensions would have to be
added rather than one (Fig. 1c), etc. Therefore, in the
general case ) — 1 extra dimensions are needed for data
coming from D different days, and 19 extra dimensions
are needed in our case. The above can be also seen as
using the minimum number of dimensions so that each of D
points can be at equal distance from all others. Therefore
the D — 1 dimensional vector will contain the coordinates
of one such point for each day. This vector is the same
for all emotions recorded the same day. The classification
improvement for 8 emotions can be seen in Table 1.

4 Improved use of data and new
features

4.1 Data

In previous work [12], we used data consisting of 2000
samples-per-signal, for each of the eight emotions, gath-
ered over 20 days.

The data were originally gathered in 34 sessions where
the 8 different emotions were expressed one after the other.
Each full session lasted around 25 minutes, resulting in
around 28 to 33 thousand samples per signal, with each
emotion being around 2 to 5 thousand samples long, due
to the randomness of the Clynes method of eliciting the
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Figure 1: Fictitious example of a highly day-dependent fea-
ture for 2 emotions from 2 different days. (a) The feature
values for (A)nger and (J)oy from 2 different days. (b) Ad-
dition of an extra dimension allows for a line b to separate
Anger from Joy. The data can be projected down to line
@, so the addition of the new dimension did not increase
the final number of features. (c) In the case of data from 3
different days, addition of 2 extra dimensions allows for a
plane p to separate Anger from Joy. The data can again be
projected down to line a, not increasing the final number
of features.

Data | Without Day Matrix | With Day Matrix
(%) (%)

Set A 42.97 46.09

Set B 54.69 54.69

Table 2: Comparative classification rates for the 16 com-
mon days (128 data points in total) between Data Sets A
and B, using 24 features fed to the Fisher Algorithm. The
results suggest that using the longer data (Set B) improves
classification performance.

emotional states [1]. In several occasions one or more sen-
sors failed during parts of the experiment. The first 20
sessions were the ones used in the previous sections, choos-
ing 2000 samples from each emotional state while trying
to avoid parts where the sensors had failed. The question
which remained was if any information could be extracted
from the uninterrupted data, like transition characteristics,
or if an online classifier could be built. Therefore, we re-
visited the data from the full sessions and chose 20 days in
which the sensors did not fail during any part of the ex-
periment. 16 of the original days and another 4 which had
not been used before were included. We call this new set
of data “Set B”| with “Set A” being the original data men-
tioned in the previous sections. Some comparative results
between the common days of the two slightly different sets
of data can be seen in Table 2.

4.2 Features

Using peak detection on the Blood Volume Pressure signal,
the Heart Rate can be calculated. The same 6 features pro-
posed in Section 2 can be extracted from the Heart Rate as
well. Additionally, a set of 11 other features have been pro-
posed [4] for use with these physiological data. We would
like to see if the inclusion of any of the above features can
improve classification. The results can be seen in Tables 3,
4 and 5. Note that the total number of different features
is 40 (rather than 41) because the mean EMG that was
proposed in [4] was already included in the original 24 fea-
tures.

We can see that in most cases, a small number msrrs
of the original features gave the best results in SFFS. For
SFFS-FP a slightly larger number msrrs—_rp of features
tended to give the best results. These extra features found
useful in SFFS-FP but not in pure SFFS, could be inter-
preted as containing some useful information, but together
with a lot of noise. That is because feature selection meth-
ods like SFFS can only accept/reject features, while the
Fisher algorithm can also scale them appropriately, per-
forming a kind of “soft” feature selection and thus making
use of such noisy features.

5 Online Recognition

Each day of Data Set B contains a continuous stream of
data running through 8 different emotions. This data set
is then appropriate for training and testing an online algo-
rithm.



Number of Without Day Matrix With Day Matrix
Features SFFS | Fisher | SFFS-FP | Fisher | SFFS-FP

(%) | (%) (%) (%) (%)

24 49.38 51.25 56.87 54.37 63.75

30 (incl. HR) 52.50 56.87 60.00 58.75 63.75

11 (Other) 60.62 70.00 70.63 61.25 63.12

40 (incl. HR, Other) 65.00 77.50 81.25 77.50 78.75

Table 3: Comparative classification rates for 8 emotions from all 20 days (160 data points in total) of Data Set B and
different features and methods used. The Day Matrix adds 19 features to the data fed to the Fisher Algorithm.

Number of Without Day Matrix | With Day Matrix
Features MSFFs | MSFFS—FP MSFFS—FP
24 14 16 19
30 (incl. HR) 5 7 22
11 (other) 11 7 7
40 (incl. HR, other) 8 25 32

Table 4: Number of features m proposed by the SFFS algorithms that gave the best results in Data Set B. When a range
of SFFS algorithms performed equally well, only the one proposing the fewest features is listed.

Number of Without Day Matrix | With Day Matrix
Features Fisher SFEFS-FP Fisher | SFFS-FP

24 7 7 4 4

30 (incl. HR) 1 5 3 1

11 (other) 5 6 5 3

40 (incl. HR, other) 7 5 7 6

Table 5: Number of dimensions used in the Fisher Projections which gave the best results, out of a maximum of 7

dimensions.
listed.
5.1 The iterative algorithm

Most of the data manipulation in this thesis has been
done using MATLAB which is relatively slow compared to
C/C++ and other compiled programming languages but
has very good vector/matrix manipulation abilities. Any
real-life real-time application will probably not be using
MATLAB, so manipulating large vectors at every time step
will probably make the whole process too slow. There-
fore, in the online version of the algorithm we will only use
features whose values can be updated at every time step
with minimal computational cost. The 6 features per sig-
nal proposed previously can be iteratively updated using
the following algorithm (where Syy1 is the signal of the
time step just incorporated in the data and W is the width
of the moving window in number of time steps):

For3< N <W
1

N
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When a range of Fisher Projections performed equally well, only the one using the fewest dimensions is
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The estimates for the first few steps can be calculated
using the offline formulae (Eqns. 1-6)

The above iterations assume a continuous feed of data,
therefore we will be using the long continuous data of Set
B, as mentioned earlier. Using all 5 signals (EMG, BVP,



GSR, Respiration, and HR), gives a total of 30 features
that can be calculated for every position of the moving
window, for each one of the days.

5.2 Training data

Given that this is an online algorithm, it is not clear if we
should use data from emotions of one day in the training of
the classifier for other emotions of the same day. Therefore,
assuming that a person does not re-train the algorithm dur-
ing the day, we only use features from other days to train
the classifier. Because of the small amount of days avail-
able, we use the leave-one-out method. This means that a
new classifier is trained using 19 days and tested on the one
left out, with the process repeated for all 20 days. Each day
has around 30 thousand time steps, so a moving window
can produce around that many sets of 30 features. But
using all these sets for training would make the problem
computationally very hard, requiring extreme amounts of
disk space, memory and time, and would be almost use-
less, as consecutive time steps have very highly correlated
features. Therefore, we arbitrarily choose to use a subset
of 200 sets of features per emotion, updating around every
15 time steps. This produces 30400 training sets of fea-
tures (200 sets of features per emotion times & emotions
per day times 19 days). These are then fed into the Fisher
Algorithm to produce a reduced dimensionality Fisher Pro-
jection.

5.3 Testing data

Using the Fisher Projection matrix, we calculate the pos-
terior probabilities for all the sets of features (around 30
thousand data points) of the day we are testing and clas-
sify each one as coming from the emotion with the highest
posterior probability.

5.4 Data labeling and moving window
size

In the offline version, features were calculated from seg-
ments of data known to fully belong to only one emotion.
In the online version, features are calculated based on data
from a moving window. When the window includes the
transition from one emotion to the next, features are cal-
culated from data coming from 2 different emotions. It is
not clear if these features should be included in the train-
ing of the classifier, and to which emotion. Similarly it
is not clear if the classifier should be expected to classify
these features to the previous or the next emotion during
the testing phase. We expect our decisions on the training
phase to influence the performance of the classifier in the
testing phase.

The objective of an online emotion classifier is to first
recognize as correctly as possible the emotional state of the
user (high classification rate), and second to recognize it
as soon as possible (high sensitivity). The former suggests
a large window size, to minimize variance in the features
within a class. It would also require that the features be
considered as belonging to the previous emotion if most
of the window is still in the previous emotion. On the
contrary, the latter suggests a small window size, and the
features of a window including the smallest part of a new
emotion to be considered as belonging to the new emotion.
Taking into account the above tradeoffs, we built and com-
pared several classifiers, varying the following parameters:

W: We compare 5 different window sizes W (100, 200,
500, 1000, and 2000 time steps long). We also try combi-
nations of 2, 3, 4 and all 5 window sizes. This is done by
feeding to the Fisher Projection Algorithm a multiple of
the 30 features calculated from each different window size
for each data point (60 features when using 2 windows, 90
features when using 3 windows, etc.) Besides the 5 single-
window cases, there are 10 pairs, 10 triplets, 5 quadruplets
and 1 case of all 5 window sizes used, therefore a total of
31 different window size combinations.

Wirain,: A data point’s features are used in the training
of the new emotion when it is at least Wiyqin, time steps

into the new emotion. We compare classifiers with 0 <
Wiraing

Wirain, < W. Normalizing provides wirain, = L,

0< Wtraing S 1.

Wiraing: A data point’s features are used in the training
of the previous emotion when it is at most Wirain, time
steps into the new emotion. We compare classifiers with

—g < Wiraing, < % Normalizing provides wirain, =

Whrainz 0.5 < wirainy < 0.5.

Wiest,: A data point is expected to be classified as be-
longing to the new emotion when it is at least Wicor, time
steps into the new emotion. We compare classifiers with
0 < Wtestl S W

Wiestot A data point is expected to be classified as be-
longing to the previous emotion when it is at most Wicay,
time steps into the new emotion. We compare classifiers
with 0 S Wtest2 S w.

5.5 Definition of performance

In the case of an online algorithm, there are options for
how to define performance. We could try to combine the
posterior probabilities of all data points in one emotion and
end up with an overall posterior probability from which we
could classify the whole segment. Alternatively we could
use simple voting among the classification results of all data
points within one emotion to come up with an overall clas-
sification of the whole segment. None of these methods are
natural, because in real life we will not know the emotion
boundaries of the data we are trying to classify. (Although
such pre-segmented classification is what was used in the
facial and vocal expression recognition results alluded to
earlier.)

Another measure of performance is the data point classi-
fication success rate. This is the ratio of the total number
of data points correctly classified over the total number
of data points in the day for which a classification was
attempted. The results analyzed later use this definition
of performance, but overall segment-classification perfor-
mance will also be mentioned.

5.6 Results

In all 31 window-size combinations, the best results were
obtained when the data were projected down to 7 (¢ — 1)
Fisher dimensions. This is probably because the increase
in training data helps in reducing the effect of noise in the
features, making all 7 dimensions contain useful informa-
tion, unlike in the offline version.

In all single-window cases, the larger the window size,
the better the results. In all other cases, the larger the
maximum window size used, the better the results.
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Figure 2: Success rate vs. wyrqin, for different combina-
tions of window sizes. Using data points from the start of
a new emotion, even though the window still includes data
from the previous emotion in the training, seems to slightly

improve the results.
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Figure 3: Success rate vs. Wieq, for different combinations
of window sizes. Using data points from the start of a
new emotion, even though the window still includes data
from the previous emotion in the testing, seems to slightly
worsen the results.
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Figure 4: Success rate vs. wWyrqin, for different combina-
tions of window sizes. Excluding data points from the end
of an emotion segment in the training slightly improves the

results.
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Figure 5: Success rate vs. Wiee, for different combinations
of window sizes. Excluding data points from the end of an
emotion segment in the training significantly improves the
overall results.



In all cases, the results when using a combination of
window sizes were at least as good, and in most cases sig-
nificantly improved, over using any subsets of these window
sizes.

Using data points from the start of a new emotion, even
though the window still includes data from the previous
emotion (Wirain, << 1) in the training, seems to slightly
improve the results (Fig. 2). On the contrary, using these
data points in the testing, slightly worsens the overall re-
sults (Fig. 3). Therefore, they help improve the training
of the classifier, but they themselves are not classified as
well as the middle section of the emotions.

Excluding data points from the end of an emotion seg-
ment (Wirain, < 0) in the training, slightly improves the
results (Fig. 4). Similarly, excluding these data points
from the testing significantly improves the overall results
(Fig. 5). It seems that the data towards the end of each
emotion segment does not help in the training of the clas-
sifier, and is not classified as well as the middle section of
each emotion segment. We inquired with the actress who
provided the data, and she indicated that trying to express
a specific emotion steadily for 3 minutes often got boring;
hence the data towards the end of each segment might not
be as representative of the emotion as the earlier and mid-
dle portions of the segment.

The highest data point classification success rate was
obtained when combining all 5 window sizes, and it was
48.98%. Tt should be noted that the segment classification
success rate reached 60%, while the offline version using
the same methods (Fisher Projection method, 30 features,
without Day Matrix) gave a (segment classification) suc-
cess rate of 56.87% (Table 3). Unfortunately, in most real-
life applications, presegmented data will not be available.

6 Conclusions

The results here confirm and expand upon our earlier re-
sults, which suggested that there is significant information
in physiological signals for classifying the affective state
of a person who is deliberately expressing a small set of
emotions.

Success rates above 80% when recognizing 8 emotions
are extremely high, even compared to the other exist-
ing methods of emotion recognition. Nevertheless it is
very important to keep in mind that these were intention-
ally expressed emotions, of only one subject, expressed in
the same sequence every time (with unknown interactions
between emotions) and all had similar duration (some-
thing not necessarily true with ’real’ emotions). Therefore,
plenty of work has to be done until a robust and easy-to-
use emotion recognizer is built. A first step was made, by
looking into online emotion recognition. Results from the
online classifier were very encouraging, comparable to the
offline version’s results using the same features and meth-
ods.

In the future, an emotion recognizer could incorporate
a model of an underlying mood, changing over longer pe-
riods of time. The question is how frequently should the
estimates of the baseline be updated to accommodate for
the changes in the underlying mood. Also, it appears that
although the underlying mood changes the features’ values
for all emotions, it affects much less the relative positions
with respect to each other. We are investigating ways of

exploring this, and expect it to yield much higher recogni-
tion results.
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