M.I.T Media Laboratory Perceptual Computing Section Technical Report No. 403
Shorter version in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR’97)
November, 1996

Real-Time Closed-World Tracking

Stephen S. Intille, James W. Davis and Aaron F. Bobick
MIT Media Laboratory, 20 Ames St., Cambridge, MA 02139
(intille | jdavis | bobick@media.mit.edu)

Abstract

A real-time tracking algorithm that uses contextual
information is described. The method is capable of si-
multaneously tracking multiple, non-rigid objects when
erratic movement and object collisions are common.
A closed-world assumption is used to adaptively select
and weight image features used for correspondence.
Results of algorithm testing and the limitations of the
method are discussed. The algorithm has been used to
track children in an interactive, narrative playspace.

1 Introduction

Many video understanding tasks require observa-
tion and tracking of multiple rigid and non-rigid ob-
jects undergoing rapid, unpredictable motion. Con-
sider the following scenario:

Four six-year-old children begin the game in
the “bedroom,” an 18 by 24 foot space fur-
nished like a child’s bedroom, complete with
a movable bed. As the children frantically
run around the room, objects like rugs and
furniture begin to “speak” based on the chil-
dren’s actions. Suddenly, the room trans-
forms — images of a forest fade onto two
of the room’s walls. The children embark
upon an interactive adventure, while being
instructed and observed by the room.

We have constructed such an imagination space,
called the KipsRooMm, where a computer system
tracks and analyzes the actions and interactions of
people and objects[b]. Figure 1-a shows the experi-
mental setup of the KidsRoom viewed from the sta-
tionary color camera used for tracking objects. Here
four people are in the scene. During a typical multi-
person interaction, particularly when the people are
young children, similar-looking objects bump into one
another, move by one another, and make rapid, large
body motions.

In this paper we describe a real-time tracking algo-
rithm that uses contextual information to simultane-
ously track multiple, complex, non-rigid objects. By
context we mean knowledge about the objects being
tracked and their current relationships to one another.
This information is used to adaptively weight the im-
age features used for correspondence. The algorithm
was designed for use in the KidsRoom playspace. The
goal of this paper is to detail generic problems and
solutions that are in any similarly complex tracking
tasks.

2 Previous approaches

Most real-time tracking systems that track non-
rigid objects have been designed for scenes contain-
ing single, large objects such as a person[17], hand[3]
or face[7] and have not been tested in domains where
independent, multiple objects can interact.

Adaptive correlation template tracking methods
(e.g. energy-based deformable models[3]) typically as-
sume each template varies slowly or smoothly, tem-
plates don’t collide, and high-resolution support from
the data is available. As we will discuss, we have
found it is often difficult to separate the tracking from
the boundary estimation problem. Therefore, some
people-tracking methods that require accurate object
boundary detection based on intensity[2] and optical
flow[12] are difficult to apply in our tracking task. Fur-
ther the difficulty in segmenting colliding children and
their rapid changes in appearance and motion pre-
vents the use of differential motion estimators that
use smooth or planar motion models [4] and tracking
techniques that require reasonably stable edge compu-
tation[8]. Motion difference blob size and shape char-
acteristics are sometimes used for tracking[15]; here
we use background-differenced blobs. However, since
children are small and their difference blobs merge fre-
quently, there is usually no single feature for an object
that remains trackable for more than a few seconds.

Consequently, we believe that low-resolution, non-
rigid, multiple-object tracking in real-time domains
like the KidsRoom requires using contextual infor-
mation to change how different features are used for
tracking based on contextual information. Allen’s
bird counting system [1] illustrates that recognizing
two of the same type of objects (birdsg or the same
type of object in two different contexts (grounded and
flying auklets) may require two entirely different vi-
sion methods. Systems that have used non-geometric
context in dynamic situations include Fu’s shop-
per system[6], Prokopowicz’ active vision tracker[13],
and Rosin’s context-based tracking and recognition
surveillance system[15]. Here we modify a tracking
approach that uses context-sensitive correlation tem-
plates for tracking non-rigid objects[9] for a real-time
application.

3 Closed-worlds

Strat[16] has demonstrated that context-dependent
visual routines are powerful tools for image under-
standing in complex static domains. Context is one
way of addressing the knowledge-selection problem in

R i

Figure 1: (a) The top-down view of the KidsRoom used
by the real-time tracking algorithm. Four people and a
movable bed are in the room. (b) By using a fast, simple

clustering algorithm, small back%round difference clusters
are merged with larger nearby clusters, as marked by the
bounding boxes.

dynamic, multi-object tracking. We consider the con-
text of a tracking problem to be a boundary in the
space of knowledge — a boundary outside of which
knowledge is not helpful in solving the tracking prob-
lem[9]. In the KidsRoom domain, a context could be

“a region of the room away from the door
that contains two children and the floor;
one child has a “reddish” average color and
was last moving left; the other child has a
“bluish” average color and was last moving
right.”

One way to generate and exploit such contextual
knowledge is to use a closed-world assumption. A
closed-world is a region of space and time in which the
specific context of what is in the region is assumed to
be known. The internal state of the closed-world —
e.g. the positions of the objects — however, is not
necessarily known. Visual routines for tracking can
be selected differently based on knowledge of which
other objects are in the closed-world. Closed-worlds
circumscribe the knowledge relevant to tracking at a
given instant and therefore reduce the complexity of
the tracking problem. Nagel[11] and Mundy[10] have
both suggested that closed-world information is useful
for building systems that extract conceptual descrip-
tions from images and image sequences.

For robust tracking in a complex scene, a tracker
should understand the context of the current situa-
tion well enough to know which visual features of an
object can be tracked from frame to frame and which
features cannot. Based on these observations, a tech-
nique is described in [9] called closed-world tracking.
In that off-line implementation, adaptive correlation
templates are used to track small, non-rigid, colliding
objects — players on a football field. Closed-world
contextual information is used to select pixel features
for inclusion in the matching template; the method for
selecting the pixels changes based upon which objects
are in a given closed-world.

The remaining sections of this paper describe a real-
time implementation of closed-world tracking. Closed-
world information is used to adaptively weight differ-
ent types of image features into a single correspon-
dence measure based on the current context. The

closed-world assumption is also used to determine the
order in which different matching situations should be
considered.!

The details of our real-time closed-world tracking
algorithm differ from those described in [9] because of
the limitations introduced by real-time requirements
and differences in the imaging environment. However,
the nature of the two tracking systems is similar. In
the following sections we describe the algorithm in de-
tail and some problems we have encountered; many
of the difficulties are generic and will need to be ad-
dressed by anyone with similar tracking tasks.

4 Objects, blobs, and closed-worlds

The tracking algorithm uses four data structures:
(1) Each object in the world has a data structure that
stores the object’s estimated size, color, velocity, and
current and past position. This information is used
for matching each object in the last frame to a blob in
the new frame. (2) Image blobs are computed in each
frame using background differencing; each blob’s size,
color, and position is recorded. (3) A local closed-
world data structure exists for every blob, as in [9],
and stores which objects are assigned to the blob and
how long they have been there. Two objects that are
touching or nearly touching will appear as one blob;
therefore, they should be assigned to the same closed-
world. The state of the closed-world to which an ob-
ject is assigned determines how the object’s properties
are re-estimated from the current frame. (4) Finally,
the system uses knowledge about the the global closed-
world, which stores information about which objects
are in the entire scene.

At each time step, the algorithm must match ob-
jects in the last frame to blobs in the new frame using
the object and blob properties such as color and po-
sition. The metric used for matching is a weighted
sum of several individual feature distance measures,
where the local and global closed-world information
from the last frame is used to set the weights and to
control the matching strategy. Once all objects are
matched to blobs, the object properties are updated
using the new blob information and the state of the
new closed-world to which it has been assigned. The
algorithm uses global closed-world information to de-
termine if any objects entered or left the scene. The
algorithm then iterates. The following sections de-
scribe each stage in more detail.

5 Computing blobs

Recall that the room is configured as shown in Fig-
ure 1-a. The camera is static, and therefore a reliable
background image free of people and movable objects
can be obtained.

Due to the difficulty of modeling rapidly mov-
ing people (particularly small children), background-
difference blobs are used as the primary visual rep-
resentation. The background is removed from each
frame using a YUV-based background subtraction

!Mundy[10] has suggested that given a closed-world a
system should assume a simple explanation first and
then if that explanation is not consistent with the data
consider more complicated explanations.

method similar to the method described in [17], which
uses color but not intensity intensity information.
This method correctly removes most shadowed re-
gions.

In practice the resulting thresholded blob images
are noisy due to camera noise or objects that are bro-
ken apart because they have regions colored like the
background. Therefore, three dilation operations are
performed and then a fast bounding box merging algo-
rithm is used to cluster small groups of blobs.? The re-
sulting blob image for one frame, with bounding boxes
drawn around clusters, is as shown in Figure 1-b.

Each blob’s size, position, and average color are
computed during the clustering operation, but using
the original, not the dilated, threshold image. Using
the dilated image will corrupt the size and color esti-
mates because the blob will contain many background
pixels. Unfortunately, the non-dilated image is sensi-
tive to the color thresholds used by the background
differencing algorithm. The threshold must be bal-
anced at a setting that can discriminate most clothing
from the background while not including many back-
ground pixels in the difference blob.

6 Matching objects to blobs

This section describes the image features used for
matching, how those features are combined into a sin-
gle match score matrix, and how the match score
matrix is used to determine object-to-blob correspon-
dence.

6.1 Real-time features

Four properties are computed by each object — av-
erage color, position, velocity, and size — and used to
compute matching distance measures.> Due to blob
thresholding errors, each of these estimates can be
noisy as a person moves around the room.

The first measure is distance between the average
color of an object and a blob. Average color is a re-
liable discriminator between many objects when (1)

2The thresholded, dilated image is received after back-
ground removal. Connected regions are found, and their
bounding boxes are computed. The distance between
a cluster and and surrounding clusters (based on the
closest bounding box points) is determined. If two clus-
ters are within a small distance of one another (5 pix-
els in our system), the clusters are merged into a sin-
gle cluster. No morphological growing is used to con-
nect the merged pixels, however. They are simply as-
signed to the same cluster. A chaining process is then
invoked where the current cluster continues growing un-
til all nearby clusters have been considered for inclu-
sion based on the bounding boxes of the clusters al-
ready included. The process repeats until all clusters
are merged or found to be too far from other clusters
to merge. Large diagonally-oriented objects have large
bounding boxes. Hence, when merging a large cluster
the bounding box difference is replaced with a slower
algorithm that estimates the smallest distance between
the boundaries of the two blobs.

®These four properties have been selected because they
are quickly computable. An off-line or future sys-
tem, however, could augment this information with
histogram-based color algorithms and/or image tem-
plates as used in [9].

shadow pixels are a small percentage of blob pixels, (2
blob color is re-estimated as often as possible, and 533
the color is normalized for brightness. When the frame
rate 1s about 3 Hz or higher, average color change be-
tween two frames for the same object blob is small
compared to the color difference between most objects.

The second measure is the Euclidean distance be-
tween an object’s position and a blob position in the
new frame. At high frame rates, objects are normally
close to their blob in the new frame.

The third measure is distance from predicted posi-
tion. Velocity is estimated using an object’s current
and previous positions. Then the position of the ob-
ject 1s predicted in the new frame and the Fuclidean
distance computed between the predicted position and
the blob position in the new frame.

Finally, the fourth measure is the size difference
between an object’s current blob and all blobs in the
new frame, which vary slowly at high frame rates.

6.2 Computing the match score matrix

For each distance measure, a match score matrix
S is created, where entry S;; is the match score of
object ¢ with blob j. To simplify the combination
of measures, each S matrix is normalized such that
Z SZ']' =1.

Next, the four S matrices are weighted and summed
into a single matching score matrix, M. M;; is the sin-
gle distance measure between object ¢ in the last frame
and blob j in the new frame. As discussed shortly, the
weighting depends upon the local and global closed
world situation, such as whether objects are merging,
splitting, entering the room, or exiting the room. The
matching has several phases and different weights are
used for each step.

6.3 Computing the best match

Given M, the global closed-world assumption can
be used to make object to blob matches using infor-
mation about all known objects simultaneously. Con-
sider the situation where the only active matching
measure is closest distance. Figure 2 illustrates a sce-
nario where the total number of objects in the world
is known to be three. Objects X, Y, and Z in frame
1 need to be matched to blob objects B1, B2, and B3
in frame 2. Considering only the distance measure,
7 clearly matches to B3. If matching independently,
the best match for X is B1. If this match 1s made,
however, the distance between Y and B2 (the only re-
maining match possible) is large. The best match for
X 1s actually B2 because it keeps the distance between
Y and it’s best match, B1 low while still providing a
good match for X.

Rangarajan and Shah[14] have described a non-
iterative greedy algorithm that, given a score ma-
trix with m objects, can be used to make object-to-
blob matches in O(m?).* The algorithm will find a
near-optimal pairing of all objects, avoiding individ-
ual assignments that are bad while trying to keep each

*Given we test our system on only four objects, we could
compute the best global match for little additional cost,
but for many other domains with more objects the
greedy algorithm would be required.

i

L J
|2}
-
Ll

* jrama 1 o frame 2

Figure 2: Sometimes the match that is the best locally
is not the best when all other matches within a closed
region are considered. When distance traveled is used as
the feature, object X to blob Bl is the best match for X
but creates a poor match of Y to B2.

match cost as small as possible. The reader is referred
to their paper for the details of the algorithm. Since
the tracking algorithm always knows the number of
objects in the scene, we use the Rangarajan and Shah
algorithm to compute correspondence given the match
score matrix, M. We discuss a problem with this ap-
proach in section 8.3.

6.4 Enforcing hard constraints

Hard constraints can be used to prohibit a match
between object ¢ and blob j by flagging M;; as in-
valid. Two constraints currently used by the system
are a maximum distance constraint and a size expla-
nation constraint. The closed-world context controls
which constraints are applied at a given stage in the
matching process.

The maximum distance constraint eliminates the
possibility of any match between an object and a new
blob that is greater than some reasonable maximum
distance. In Figure 2, therefore, object Z 1s so far from
blobs B1 and B2 that the match is not even considered.
In our system the maximum distance i1s set at 100
pixels, or about a third of the scene.’

A second hard constraint can prohibit object-to-
blob matches that are inconsistent with size informa-
tion known about the objects already assigned to the
blob. When an object of size s pixels is matched to a
blob, s pixels are marked as “assigned.” If the corre-
spondence algorithm later proposes that another ob-
ject match with the same blob, there must be enough
remaining unassigned blob pixels to accommodate the
second object. ©

7 Closed-worlds in closed rooms

Closed-worlds are used in three ways. (1) The
global closed-world is used to determine the order in
which matching should proceed in order to correctly
maintain the number of objects in a “closed room” as
objects enter and exit. (2) Knowledge about which ob-
jects are in local closed-worlds and the global closed-
world is used to select the combination weightings used

®This constraint is set rather high because when an ob-
ject collides with other objects, each object’s position
is estimated from the center of the group. Hence, large
changes in estimated position are possible.

In the current implementation, “enough” is half of the
pixel size of the object being added. Inaccuracies in
size estimation are caused by shadows that are not fully
removed, camera noise, and objects that look similar to
the background.

to generate the match score matrix M and to deter-
mine which matching constraints should be applied.
(3) After matching, an object’s local closed-world is
used to determine whether some object attributes (e.g.
size, velocity) should be re-estimated or held constant
when the object is matched to a new blob.

7.1 The global closed-world

The global closed-world assumption requires that
the tracking algorithm have an accurate count of the
number of objects in the entire scene. In this domain,
however, as in many “room” domains, initialization
can be performed automatically by emptying the space
of all movable objects and then defining a “closed-
room” the same way that one is obtained in real life:
by adding a “door.” The one rule for the space is
that all people and objects must enter one at a time
through the door.”

The door is represented by a small region of the
image, marked by the box in the bottom left corner
of Figure 1-b. Objects are permitted to enter and
exit the room through the door once the tracker is
initialized. Thereafter, the tracker will maintain the
global closed-world. The correspondence algorithm
described later in section 7.2 makes use of the fact
that objects don’t appear out of thin air; hence, the
order of matching can be used to reduce the chance of
matching error.

7.2 Match order and feature weighting

We use a staged matching process that is ordered so
as to use global closed-world information to minimize
the chance of incorrect matches to due objects that are
entering and leaving the room. The main algorithm
can be broken into nine stages, which are described in
detail in an Appendix. The weightings used to cre-
ate the context-sensitive matching measure matrix M
are set differently depending upon the matching step.
For example, the second step i1s matching any known
room object to any blobs already assigned a blob in
the first matching step — any unmatched room objects
are tested against occupied blobs that are big enough
to contain more than one object. In this context color
is not used as a matching feature, since it is known
that the color average will be invalid when comparing
an object to a blob that contains multiple objects.

The stages are ordered to exploit the fact that ob-
jects can’t appear from or disappear into “thin air”
and work from the most common to the least com-
mon explanations.
7.3 TUpdating object properties

After object assignment is completed, the local
closed-world is used to determine whether an object’s
properties can be reliably updated from it’s blob given
a a particular context.

"The algorithm is currently designed so that only one per-
son is in the “door” at a time, which simplifies the vision.
However, one can imagine placing additional cameras in
the room that focus on the door and perform special
processing to recognize who and what comes through.
Our current system cannot correctly interpret a person
walking through the door with an object and later drop-
ping that object unless the system is explicitly told the
new person has an object.

Color estimation only occurs when an object is the
only object in its closed-world. During these times,
the average color will not be corrupted by other ob-
jects. Hence, when two objects are assigned to the
same closed-world, each object’s average color is held
constant. Color estimation resumes only when an ob-
ject is 1solated again in a single-object closed-world.

The same strategy controls size estimation. When
objects are in single object closed-worlds, the object
size 18 re-estimated from the current blob, but when
an object 1s in a multi-object closed-world, its size tag
is held constant.

An object’s position is updated every frame regard-
less of closed-world status using the centroid of the ob-
ject’s blob. Therefore, two objects in the same closed-
world a given frame will have the same position. Con-
sequently, when the objects split into separate closed-
worlds the distance measure will not affect the match-
ing since both objects will be the same distance from
all candidate blobs.

Velocity estimates will be error-prone when objects
move from multi-object closed-worlds to single-object
closed-worlds and visa versa.® Hence, the velocity
s not re-estimated when objects are in multi-object
closed-worlds. Therefore, when matching objects in
a multi-object closed-world that have just split into
multiple single closed-worlds, the velocity measure will
prefer matches that have objects moving in the same
direction as they were moving when they originally
merged. This preference is desirable if the objects
are merged a short time (probably just passing nearby
each other), but the longer the objects are together,
the more likely it becomes that one or both objects
have changed velocity. Therefore, an additional pa-
rameter is stored for each object, the merged-time,
or the amount of time the object has been in a multi-
object closed-world. The weight of the velocity feature
is scaled by the a merged-time-weight value which falls
off gradually from 1.0 for a few frames before being
thresholded to 0 after about 1 second.’

8 Tracking results

The real-time tracking system takes s-video input
from a color Sony HandiCam. Images, 320 by 240 pix-
els, are processed at approximately 7 Hz on a single
SGI Indy 180MHZ R5000 processor when one adult is
in the room and 5 Hz when four adults are in the
room.'® Debugging and testing was performed by
recording multiple people on VHS tape and playing
the recorded data back into the real-time tracking sys-
tem to classify the interactions and study errors.

8The position of each object in a multi-object closed-
world is the centroid of the closed-world, which can be
far enough from the actual position to create a spurious
velocity measurement when each object returns to a sin-
gle closed-world and the blob position suddenly shifts to
the center of the single object.

°The merged-time-weight is set as exp(-sqr(MERGED-
TIME)/16) with a cutoff to zero after 4 frames.

1%There is no limit to the number of people that can be
tracked, but performance suffers as the number of pixels
that must be clustered increases.

8.1 Typical situations

To evaluate the algorithm we have recorded about
12 minutes of test video, with up to four people in
the space at once. Four of the people, as seen by the
camera, are shown in Figure 1-a. Some of the video
contains people wearing brightly-colored rain ponchos.
The people were asked to walk or jog in the track-
ing space and to perform several different types of
movement that could fool the tracker: isolated move-
ment, entry and exilts, pass-bys, in-and-outs, merge-
and-stops, merge-and-travels, large group merges, and
illegal activity. !

Since the algorithm is running at 5-7 Hz, perfor-
mance can sometimes change from run to run on a
single sequence depending upon the frames that hap-
pen to be used. Therefore, each test sequence was
evaluated twice. Table 1 shows the number of each
type of situation we observed for poncho and regular
data in our test data and the number of times our
tracker mislabeled any tracked objects for that type
of situation.

8.2 DPerformance

The algorithm’s best performance is, predictably,
on single-object tracking and collisions of two objects.
In these cases the method’s adaptive feature weighting
strategy usually leads to a correct match even when
two objects have similar-looking clothing (e.g. two dif-
ferent shades of blue) or are making large body mo-
tions and moving rapidly around the room. The algo-
rithm can reliably maintain the number of objects in
the space as objects enter and exit, and it can be tuned
so that it almost never “loses” an object, even though
it may swap two object labels (as tested extensively
on children in the KidsRoom[5] system).

Not surprisingly, our algorithm generally performs
better when the objects being tracked have distinctive
color features, like colored ponchos. However, when
color features are weak and when three and four ob-
jects merge into a large group, matching performance
suffers.

8.3 Limitations

Analysis of the system’s matching errors revealed
five unanticipated limitations of the real-time closed-

1 Isolated movement is the most basic tracking situation,
when one individual is moving around the space isolated
from all other individuals. Entry and exits are when a
person enters or leaves the space via the door. Pass-bys
are when individuals move near one another so that they
are close enough to merge as they walk or run past each
other. In-and-outs are a special test action where two
or more individuals stand next to one another so they
are apart and rapidly lean in and out so they merge
and split again. Merge-and-stops are when two or more
people walk towards each other to merge and then stop
for several seconds before splitting again. Merge-and-
travels are when two or more people merge, then walk
around the room very close together before they split
again. Large group merges occur when three or more
people merging together and splitting. Finally, legal
activityis when a person enters or leaves the room space
without going through the door or when someone drops
an unknown object and walks away.

isolated entry in merge merge Targe group | illegal

movement and exits | pass-bys | and outs | and stops | and travels merges activity
FExamples Poncho 14 17 5 6 0 10 0
Poncho errors (run 1) 0 0 0 0 0 0 1 0
Poncho errors (run 2) 1 0 0 0 0 0 3 0
Examples Regular 133 27 34 15 16 7 10 3
Regular errors (run 1) 0 0 3 0 1 2 6 0
Regular errors (run 2) 0 0 4 0 1 4 7 0

Table 1: This table shows the number of each type of tracking situation that appears in our test sequence with up to four

people being tracked at once. The events were classified manually.

an error is indicated.

world architecture that are issues common to many
generic tracking tasks.

First, the system is overly-reliant on blob data.
There are two main problems with the blob repre-
sentation: (1) regardless of how the color difference
thresholds are set, the blobs will not perfectly seg-
ment objects; the errors in blob computation then
propagate to every feature used for matching, and (2)
multi-object blobs provide little meaningful informa-
tion that can be used for matching and re-estimation
of object properties. A solution when more processing
power is available may be to use other features that
can be computed independently from the blob regions,
such as correlation templates, and to partition merged

blobs where possible (see [9]).

A second, related architectural limitation is that
the algorithm has no mechanism for handling slow
variation of image features while objects are merged
in a large closed-world. The algorithm is designed to
adapt each frame to slowly varying matching features.
During a merge, however, when an object is in a single-
object closed-world, color, velocity, and size measure-
ments are not updated. Consequently, when objects
merge and travel, matching errors are more likely be-
cause objects change appearance (e.g. see merge and
travels in Table 1). Even if objects merge and don’t
travel, one object can move limbs and change signifi-
cantly in size and corrupt subsequent matching.

The third architectural issue is match evaluation.
The algorithm uses the Rangarajan and Shah greedy
correspondence algorithm[14] to avoid bad global
matches when making individual matches, but this
strategy leads to some bad matches (e.g. most of
the pass-by errors). For instance, whether the tracker
makes the correct, best scoring match of object 01 to
blob b; depends upon how it matches object 05. The
problem is that oo may have just been in a multi-object
blob or may be matching to a multi-object blob, and
all possible matches may have mediocre scores. 01’s
match, however, can change depending on whether
matchscore(og, bs) or matchscore(oq, ba) has the low-
est value — even when both match scores are poor and
the small difference between them provides no useful
information. Consequently, even when match o1 to
b1 has the best match score for every matching mea-
sure (i.e. distance, color, size, and velocity) and all
other matches are about equally poor, 01 may match
incorrectly. In short, bad isn’t always terrible, and
the algorithm needs non-linear, context-sensitive cut-

For each test, the number of times the tracker made

offs that distinguish between the two. When the scene
contains several merged objects; the chance of such an
error will increase because three out of four objects
may have mediocre (but not terrible) match possibili-
ties that lead to the algorithm ignoring the best match.

Fourth, object properties are multi-stable because
they depend upon object assignment to blobs. For
example, if objects 01 and oy are assigned to blob b1,
they both have position P;. However, if 03’s blob then
merges, the position of all three objects will be Ps,
where P, and P; can be over 20 pixels apart. Simi-
larly, color is unstable depending upon the number of
objects in a closed-world.

Finally, the fifth architectural problem is that the
system is forced to make a binding matching decision
at every frame. There is no mechanism for detecting a
questionable match and then looking for further match
evidence over 5 or 10 frames before making a final deci-
sion. When the different match possibilities have sim-
ilar evaluation scores; noise and unusual merge config-
urations can lead to spurious matches that might be
corrected if several frames were considered.

Because of these architectural limitations, the sys-
tem is very sensitive to some thresholds (e.g. the size
constraint and background differencing thresholds) in
situations like multi-object merges. Unfortunately, ev-
ery threshold setting has its problems. Significantly
improving the algorithm probably requires changing
the architecture to address the problems described
above.

9 Summary

In this work we have used closed-world regions to
perform context-based tracking in a real-t 1me do-
main where object motions are not smooth, small, or
rigid and when multiple objects are interacting. The
tracking system has been used for the KidsRoom/[5],
an interactive, narrative children’s playspace, and
could prove useful for other overhead tracking domains
like observation of city street intersections, sporting
events, pedestrian malls and parking lots.

References
[1] P.E. Allen and C.E. Thorpe. Some approaches to find-
ing birds in video imagery. Robotics Institute Tech-
nical Report 91-34, Carnegie Mellon University, Dec.
1991.

[2] A. Baumberg and D. Hogg. Learning flexible mod-
els from image sequences. In Proc. Furopean Conf.
Comp. Vis., volume 1, pages 299-308, Stockholm,
Sweden, May 1994.

[3] A. Blake, R. Curwen, and A. Zisserman. Affine-
invariant contour tracking with automatic control of
spatiotemporal scale. In Proc. Int. Conf. Comp. Vis.,
pages 66—75, Berlin, Germany, May 1993.

[4] S.D. Blostein and T.S. Huang. Detecting small,
moving objects in image sequences using sequen-
tial hypothesis testing. IEEFE Trans. Signal Proc.,
39(7):1611-1629, 1991.

[5] A. Bobick, J. Davis, S. Intille, F. Baird, L. Cambell,
Y. Ivanov, C. Pinhanez, A. Schutte, and A. Wilson.
The KiDsRooM: Action recognition in an interactive
story environment. MIT Media Lab Perceptual Com-
puting
Group Technical Report No. 398, MIT, Dec. 1996.

http://vismod.www.media.mit.edu/vismod/demos/kidsroo

[6] D.D. Fu, K.J. Hammond, and M.J. Swain. Vision
and navigation in man-made environments: looking
for syrup in all the right places. In Proc. Work. Visual
Behaviors, pages 20-26, Seattle, June 1994.

[7] G.D. Hager and K. Toyama. The XVision system:
A general-purpose substrate for portable real-time
vision applications. Comp. Vis., Graph., and Img.
Proc., 1996. To appear.

[8] D.P. Huttenlocher, J.J. Noh, and W.J. Rucklidge.
Tracking non-rigid objects in complex scenes. In Proc.
Int. Conf. Comp. Vis., pages 93-101, Berlin, Ger-
many, May 1993.

[9] S.S. Intille and A.F. Bobick. Closed-world tracking.

In Proc. Int. Conf. Comp. Vis., pages 672678, June
1995.

[10] J. Mundy. Draft document on MORSE. Technical
report, General Electric Company Research and De-
velopment Center, Feb. 1994.

[11] H.-H. Nagel. From image sequences towards concep-

tual descriptions. Image and Vision Comp., 6(2):59—
74, 1988.

[12] R. Polana and R. Nelson. Low level recognition of
human motion. In Proc. Work. Non-Rigid Motion,
pages 77-82, Nov. 1994.

[13] P.N. Prokopowicz, M.J. Swain, and R.E. Kahn. Task
and environment-sensitive tracking. In Proc. Work.
Visual Behaviors, pages 73-78, Seattle, June 1994.

[14] K. Rangarajan and M. Shah. Establishing motion
correspondence. Comp. Vis., Graph., and Img. Proc.,
54:56-73, 1991.

[15] P.L. Rosin and T. Ellis. Detecting and classifying
intruders in image sequences. In Proc. British Mach.
Vis. Conf., pages 24-26, Sep. 1991.

[16] T.M. Strat and M.A. Fischler. Context-based vision:
recognizing objects using information from both 2D
and 3D imagery. IEFE Trans. Patt. Analy. and Mach.
Intell., 13(10):1050-1065, 1991.

[17] C. Wren, A. Azarbayejani, T. Darrell, and A. Pent-
land. Pfinder: real-time tracking of the human body.
In Proc. of the SPIE Conf. on Integration Issues in
Large Commercial Media Delivery Sys., Oct. 1995.

Appendix: matching steps

Step 1: Known object to unoccupied blob. First,
match objects that are known to be in the room in
the last frame to unoccupied blobs in the new frame.
Blobs in the door are temporarily ignored. An unoc-
cupied blob is one that does not yet have an object as-
signed to 1t. This stage attempts to perform the most
reliable matching first: single objects to single blobs
where nothing has entered or left the room. Given
that context, the weights are set so that distance and
color are weighted strongly (.5 and .4 respectively),
velocity is weighted moderately (.1), and the collision
weight (which lowers the velocity weight the longer

an object has been merged) is active.!? The size and
%‘istance hard constraints (see section 6.4), are active.
ypically, at the completion of this step all blobs in
the new frame that are not in the door will be assigned
one object, where the best matches were made first.

Step 2: Room object to occupted blob. Next any
unmatched room objects should be tested against oc-
cupied blobs that are big enough to contain more than
one object. In this context color is not used as a
matching feature, since it is known that the color av-
erage will be invalid when comparing an object to a
blob that contains multiple objects. Hence, distance
is weighted high with velocity weighted lower (.75 and
.25 respectively). The size and distance hard con-
straints are active. Once again the door is ignored.

Step 3: Door object to door blob. Since only one
person or object is allowed in the door at a time, if
there is one unassigned object in the door and one
blob in the door, assign the object to the door blob.
This is the case where an object moved known in the
last frame has either moved to or remained in the
door region. This match should be attempted afier
the first two matches to minimize the chance of a spu-
rious match between an object in the room that has a
blob in the room with the blob in the door. Similarly,
it minimizes the chance that the object in the door
will be spuriously matched with a blob in the room
when the object in the door should match with the
blob in the door. The weights and constraints are the
same as step 1.

Step 4: Room object with door blob. If a door blob
is not explained by assignment of an object in the
door, then try to explain it by matching it with an ob-
ject remaining in the room that did not match to any
room blobs. This case occurs when someone moves
from the room to the door region. The match is found
using distance, color, and velocity where velocity is
weighted lower than distance and color, as in step 1.
The distance and size constraints still hold.

Step 5: Door object with room blob. This is the case
where an object was in the door one frame then moved
into the room the next but where the object existed
previously in the scene and did not enter through the
door. An object in the door that can’t match with a

12 Bxperimentation has shown that in general distance and
color are more reliable matching features than velocity
and therefore they are usually weighted more heavily.
Velocity will only affect a match when distance and color
provide little discriminatory power.

door blob (since there is none) tries to match with a
room blob that is not “filled.” Distance and velocity
are used as features, but not color because the object
is probably trying to match with occupied blobs, as in
step 2.

Step 6: Door blob without object; make object. If all
objects are assigned to blobs by this step and a door
blob exists, the only explanation is that a new object
just came into the door. A new object with a new
label is created and assigned to the blob in the door.

Step 7: Door object without door blob; remove ob-
ject. By this stage, if an object exists in the door it
has no blob match in the door or the room. Therefore,
the object must have left the room through the door;
the object is removed. This explanation should only
be used when every attempt has been made to figure
out where the door object could be in the room, as
done by the previous b steps. Otherwise the system
would frequently suggest that a door object left the
space when 1t is actually in the room. It is possible,
for example, for an object in the room to move into
the door region then back into the room again.

Step 8: Last-resort. At this point, the algorithm
should have been able to explain every situation. All
blobs and objects should be accounted for. If not, the
closed-world assumption has been violated and an er-
ror can be signaled. In some cases, the system can try
to automatically handle error by loosening some con-
straints somewhat (e.g. size) and then using a “best
guess” strategy.

The predominate last-resort case is when there are
unassigned objects and room blobs that are not “full.”
In this situation, distance (.7) and and velocity (.2)
are more reliable than color (.1) If for some reason an
unassigned object is near a blob with space remaining,
the algorithm signals an error but assigns the object
to the blob anyway. The distance constraint is active
but the size constraint is not.

One other case is when there are unassigned objects
and no more potential blob matches. In this situation,
the algorithm signals a closed-world violation and re-
moves the object.

Step 9: Failure. Finally, if all objects are assigned
to blobs and there are blobs without objects assigned
to them left over, the algorithm has no “best guess”
option and can simply signal an error. This error is
generated when a person carries an object into the
room through the door so that the system doesn’t
know about it and then later drops the object so that
the system can detect it. The system cannot explain
the new blob it detects.

