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Abstract

A novel computational system has been con-
structed which is capable of transcribing pi-
ano performances of four-voice Bach chorales
written in the style of 18th century counter-
point. The system is based on the blackboard
architecture, which combines top-down and
bottom-up processing with a representation
that is natural for the stated musical domain.
Knowledge about auditory physiology, phys-
ical sound production, and musical practice
has been successfully integrated in the cur-
rent implementation. This report describes
the system and its performance, highlighting
its current limitations and describing some
avenues of future work.

1 Introduction

Music transcription is a complicated cognitive task
performed routinely by human musicians, but to date
it has not been conquered by computer systems, ex-
cept on toy problems. This paper describes a com-
putational framework that may greatly expand the
range of music that can be automatically transcribed
by computer. In this introductory section, a brief non-
comprehensive history of automatic transcription sys-
tems is presented, along with a high-level description
of the type of blackboard architecture considered in
this paper.

1.1 Transcription | de�nition and
history

One functional de�nition of transcription is the act
of listening to a piece of music and of writing down
music notation for the notes that make up the piece.
This abstraction ignores much of the nuance in music

notation, but for purposes of this discussion, the pa-
rameters of concern are the pitches, onset times, and

durations of the notes in a piece. These parameters are
not su�cient to reproduce a perceptually equivalent
\copy" of the original performance, as loudness and
timbre are ignored (see [Scheirer 1995] for an attempt
to achieve perceptual equivalence in score-guided tran-
scriptions of piano performances), but they go a long
way toward forming a useful symbolic representation
of the music.

The history of automatic music transcription dates
back at least 25 years. In the early 1970s, Moorer built
a system for transcribing duets [Moorer 1975]. His sys-
tem was limited, succeeding only on music with two
instruments of di�erent timbres and frequency ranges,
and with strict limitations on the allowable simulta-
neous intervals1 in the performance. Maher improved
upon Moorer's system by relaxing the interval con-
straints, at the expense of requiring that the two in-
struments occupy mutually exclusive pitch ranges [Ma-
her 1989, Maher 1990].

After Moorer, several systems were constructed
which performed polyphonic transcription of percus-
sive music, with varying degrees of success [Stautner
1982, Schloss 1985, Bilmes 1993]. In 1993, Hawley de-
scribed a system which purported to transcribe poly-
phonic piano performances [Hawley 1993]. His ap-
proach was based on a di�erential spectrum analysis
(similar to taking the di�erence of two adjacent FFT
frames in a short-time Fourier transform) and was re-
ported to be fairly successful, largely because piano
notes do not modulate in pitch.

A research group at Osaka University in Japan has
conducted research into automatic transcription for
many years [Katayose and Inokuchi 1989]. Unfortu-

1: In this context, interval corresponds to the number of semi-

tones separating two simultaneously sounded notes. Moorer's

system was unable to detect octaves (intervals which are multi-

ples of 12 semitones) or any other intervals in which the funda-

mental frequencyof the higher note corresponds to the frequency

of one of the overtones of the lower note.
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nately, most of their published work is not yet avail-
able in English, and the available references do not
describe their system in su�cient detail to allow a fair
comparison with other existing systems. It appears
that their system is capable of transcribing multiple
voice music in some contexts.

1.2 Blackboard systems in brief

In parallel with transcription e�orts, so-called \black-
board" systems were developed as a means to integrate
various forms of knowledge for the purpose of solving
ill-posed problems. The name \blackboard" comes
from the metaphor of a number of experts stand-
ing around a physical blackboard, working together

to solve a problem. The experts watch the solution
evolve, and each individual expert makes additions or
changes to the blackboard when his particular exper-
tise is needed. In a computational blackboard sys-
tem, there is a central workspace/dataspace called the
blackboard, which is usually structured in an abstrac-

tion hierarchy, with \input" at the lowest level and
a solution or interpretation at the highest. Contin-
uing the metaphor, the system includes a collection
of \knowledge sources" corresponding to the experts.
An excellent introduction to the history of blackboard
systems may be found in [Nii 1986].

1.3 A limited transcription domain

It is unrealistic to expect that an initial foray into poly-
phonic transcription will be successful on all possible
musical input signals. Rather than attacking the broad
problem of general transcription all at once, this pa-
per presents an open-ended computational framework,
which has currently been implemented to transcribe a
small subset of tonal music, but which may be easily
extended to deal with more complex musical domains.
The musical context chosen for this initial tran-

scription system is piano performances of Bach's
chorales. Bach wrote most of his chorales in four-
voice polyphony (the standard bass-tenor-alto-soprano
con�guration). Today, they are used mostly to teach
the principles of musical harmony to music theory stu-
dents (in fact, they are often used as transcription ex-
ercises for such students), but they serve as an inter-
esting and useful starting point because they embody

a very structured domain of musical practice. The
�rst phrase of an example Bach chorale is shown in
Figure 1.

The importance of a structured domain is that it
allows the transcribing agent to exploit the structure,
thereby reducing the di�culty of the task. To give

an example of such exploitation, consider a music the-
ory student transcribing one of Bach's chorales. In a

given chord, the student may �nd it quite easy to pick
out the pitches of the bass and soprano notes by ear.
It may be more di�cult, however, to \hear out" the
pitches of the two middle voices, even though it is quite
easy to hear the quality of the chord. By taking advan-
tage of knowledge of the chord quality, it is a simple
task to determine which chord is being played, and it
is possible to \�ll in" the inner voices based on the sur-
rounding context. The structure of 18th century coun-
terpoint music provides powerful tools for transcrip-
tion, which may be leveraged as easily by a computer
knowledge-based system as by a human transcriber.
1.4 A sampling of relevant knowledge

The types of knowledge that may be usefully employed
in the de�ned transcription task fall into three cate-
gories: knowledge about human auditory physiology,
knowledge about the physics of sound production, and
knowledge about the rules and heuristics governing
tonal music in general and 18th century counterpoint
in particular. Some knowledge examples are given be-
low:

� From studies of human physiology, we know that
the cochlea, or inner-ear, performs a running
time-frequency analysis of sounds arriving at the
eardrum.

� From physics, we know that the acoustic signals of
pitched sounds, like musical notes, are very nearly
periodic functions in time. Fourier's theory dic-
tates that these sounds may be well-approximated
by sums of sinusoids, which will show up as har-
monic \tracks", or horizontal lines, in a time-
frequency (spectrogram) analysis of the sound.

� From musical practice, we know many things
about which notes may be sounded simultane-
ously. For example, we know that two notes sepa-
rated by the musical interval of a diminished �fth
(tri-tone) will not generally be sounded together.

The three examples given above are only a small
portion of the available knowledge that may be ex-
ploited by a transcription system. The knowledge em-
bodied in the current implementationwill be presented
in the next section.

2 Implementation

In this section, the implementation details of the tran-
scription system are presented. The signal process-
ing underlying the system's front end is described, fol-
lowed by descriptions of the blackboard system control
structure, data abstraction hierarchy and knowledge
base.

2



&

?

#
#

#
#

#
#

#
#

4

3

4

3

œ
œ

œ#
œ

˙ œ
˙ œ

˙ œœ œ# œ

˙ œ

˙
œ

œ œ œ#œ# œ œ

œ œ œ

œ

œ
œ

˙ œ#œ
œ œ

˙
˙

U

˙

u

˙

Figure 1: Music notation for the �rst phrase of a Bach chorale written in the style of 18th century counterpoint.
The piece is titled Erschienen ist der herrlich' Tag.

2.1 The front end

The input to a real-world transcription system might

be from a microphone or from the output of a record-
ing playback device like a CD player. Equivalently, the
system might analyze a stored computer sound�le. In
the current system, a simple front-end has been con-
structed (in Matlab), which performs a time-frequency
analysis of the sound signal and converts it into a sim-
pli�ed discrete representation. The blackboard system
could easily be adapted to perform the front end pro-
cessing, but it was much simpler, in this initial im-
plementation, to rely upon the signal processing tools
provided by Matlab.

The time-frequency analysis is obtained through the
use of the short-time Fourier transform (STFT), which
is equivalent to a �lter-bank where the �lter channels
are linearly spaced in center frequency and all channels
have the same bandwidth. This is a particularly gross
model of the human cochlea (which is better modeled
by a constant-Q �lterbank), but is su�cient for the

current application. The output of the STFT anal-
ysis of a piano performance of the Bach example is
shown in Figure 2. The piano performance was syn-
thesized from samples of a Bosendorfer grand piano
by the CSound music synthesis language, based on a
MIDI representation of the Bach score.

In parallel with the time-frequency analysis, the
short-time running energy in the acoustic signal is
measured by squaring and low-pass �ltering of the
signal. Sharp rises in the running energy are inter-
preted as note onsets and are used to segment the
time-frequency analysis into chunks representing in-
dividual musical chords. Onset detection is a partic-
ularly fragile operation for real-world signals, but is
su�cient for the computer-synthesized piano signals
used in this system. In this initial implementation,
simplicity is strongly favored over robustness in the
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Figure 2: Short-term harmonic spectrum (spectro-
gram) for the musical example shown in Figure 1. The
input to the blackboard system is a discretized version
of the information in the spectrogram representation.

front end | rather, the concentration is placed on the
blackboard portion of the system.

In each chord segment, the output of the time-
frequency analysis is averaged over time, yielding an
average spectrum for the chord played in that segment.
Each segment spectrum is further summarized by pick-
ing the energy peaks in the spectrum, which corre-
spond to the harmonic tracks (or stable sinusoids) in
the sound signal. This particular style of front-end
processing is useful mainly for piano performances of
the type analyzed by this system (it takes advantage
of the fact that piano notes do not modulate signi�-
cantly in frequency), and is one of the most signi�cant
limitations in expanding the current system to handle
other types of musical sounds.

The input to the blackboard system is a list of
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Figure 3: The control structure of the blackboard sys-
tem described in this paper, also showing the data ab-
straction hierarchy.

\tracks" found by the front end. Each track has an
associated onset time, frequency, and magnitude. The
track data is stored in a text data �le.

2.2 Blackboard control structure

As described in the Introduction, blackboard systems
usually consist of a central dataspace called the black-
board, a set of so-called knowledge sources (KSs), and
a scheduler. This is the implementation style that has
been adopted for the current system. It is shown in

outline in Figure 3.

Each knowledge source is made up of a precondi-
tion/action pair (much like the if/then structure of

rule-based systems but procedural in nature). The
knowledge sources are placed in a list, in decreasing or-
der of expected bene�t (the order is determined by the
designer before compilation). The system operates in
\steps": on each time step, the scheduler begins with
the �rst knowledge source in the list and evaluates the
precondition of each KS in turn. When a precondition
is satis�ed, the corresponding action is immediately

performed and the sytem moves on to the next time
step. If the KS list is ordered appropriately, only a
small number of preconditions will be evaluated on
average, and some unneeded computation is avoided.
With the small number of knowledge sources and the
relatively small number of hypotheses that are on the

blackboard at a given time in the current implemen-
tation, this simple scheduler is fast enough to allow a

user to watch the solution develop. As the system ex-
pands, it will become necessary to �nd more ways to
increase e�ciency (e�ciency of computation in black-
board systems makes up an entire �eld of research and
is far beyond the scope of this report).

It is worth noting that the simple scheduler used in
this initial implementation ignores much of the power
of the blackboard paradigm. Without modi�cation,
it would be di�cult to introduce planning or other
complex behaviors to the system.

2.3 Blackboard data abstraction
hierarchy

In the current implementation, the blackboard
workspace is arranged in a hierarchy of �ve levels.
They are, in order of increasing abstraction: Tracks,
Partials, Notes, Intervals, and Chords. At a lower level
than Tracks, we can conceptually �t the raw audio
signal and the spectrogram analysis performed by the
front end, and at a higer level than Chords, we can
conceive of more abstract musical data structures, like
Chord Progressions or Tonality. These levels are not
part of the current system, however. The abstraction
hierarchy is drawn within the context of the black-
board control system in Figure 3.

In the current system, hypotheses are implemented
in a frame-like manner. All hypotheses share a com-
mon set of slots and methods, including a list of sup-
ported hypotheses and a list of hypotheses that sup-
port the hypothesis object. Each hypothesis has a list
of \Sources of Uncertainty", which will be described in
a later section. They all have methods for returning
the hypothesis's start time and rating.

2.3.1 Tracks

Track hypotheses, as described in earlier sections,
are the raw data that the blackboard system analyzes.
In addition to the common slots and methods, Track
hypotheses have three slots, which are �lled in from
the data �le generated by the front end: frequency,
magnitude, and start time. The rating method returns
a number between 0 and 1.0, depending on the value
of the magnitude slot (a greater magnitude leads to
greater rating | a heuristic metric).

2.3.2 Partials

Partial hypotheses bridge the gap between Tracks
and Notes. They have one additional slot, the par-
tial number. Several new methods are de�ned: ide-
alFrequency returns the fundamental frequency of the
supported Note multiplied by the partial number, and
actualFrequency returns the frequency of the support-
ing Track. The rating function returns the rating of
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the supporting Track. By convention, a Partial may
only support one Note and may only be supported by
one Track.

In retrospect, it would seem that the Partial class is
somewhat redundant. In a revised implementation, it
might make more sense to add explicit \partial" slots
to the Note hypotheses. Such a modi�cation would
simplify the implementation of at least one KS.

2.3.3 Notes

Note hypotheses have one additional slot: the pitch,
given as the number of semitones distance from A5
(440 Hz). Additional methods include idealFrequency,
which returns the ideal fundamental frequency of a
note of the given pitch, based on the 440 Hz tuning
standard, and actualFrequency, which returns an esti-
mate of the fundamental frequency based on the fre-
quencies of the supporting Partials.

The Note rating function is based on a simple ev-
idence aggregation method, as described in [Davis et
al.1977]. The �rst �ve Partials are considered, and
each may contribute up to 0.4 evidence (either posi-
tive or negative). Both positive and negative evidence
are tallied, and are then combined to form the rating.
The amount contributed by each Partial is given by
that Partial's rating multiplied by 0.4. This heuristic
function �ts many intuitions, but it fails to model high-
pitched notes well. A better rating function might
yield a signi�cant improvement in the system's perfor-
mance, as will be shown later.

2.3.4 Intervals

Interval hypotheses have three additional slots: the
interval type, and the pitch classes of the two compo-
nent notes. The rating function returns one of three
values: 1.0, if there exist Note hypotheses that sup-
port both required pitch classes, 0.5 if only one pitch
class is supported, and 0.0 if none are supported.

Interval hypotheses have a handful of auxilliary
methods for determining whether given pitches \�t"
into a given interval, and what the \canonical" inter-
val is for two pitches (the only intervals of concern
in the system right now are minor and major thirds,
and perfect �fths, which are su�cient to construct the
major and minor triads that are the primary building
blocks of 18th century counterpoint music).

2.3.5 Chords

Chord hypotheses have four additional slots: the
pitch of the chord's root and the three component In-
tervals. The rating function returns 1.0 if all three
component Intervals have ratings of 1.0, and 0.0 oth-
erwise. An auxilliary method is de�ned to take care of

testing Intervals for possible chord membership.

2.4 Sources of uncertainty

As mentioned previously, each hypothesis maintains a
list of \Sources of Uncertainty" (SOUs). They are in
essence \tags" which are used either to direct the ow
of the system's reasoning or for keeping some state in-
formation for the knowledge sources. When there are
a large number of hypotheses on the blackboard, it
can be quite computationally expensive to check the
preconditions of all of the knowledge sources on every
time step. By allowing the KSs to tag hypotheses with
SOUs, the KSs may not have to re-evaluate their pre-
conditions on every time step. Additionally, SOUs can
be used to keep KSs from operating more than once on
the same hypothesis, which can be problematic other-
wise.

In some sense, the use of \sources of uncertainty"
described above is an abuse of the term. In the IPUS
system, from where the term is borrowed, the con-
trol system is based on the \Resolving Sources of Un-
certainty" (or RESUN) architecture, which is a spe-
ci�c o�shoot of the blackboard paradigm ([Dorken et

al.1992, Klassner et al.1995, Winograd and Nawab
1995]). The current system does not use the RESUN
architecture, though it could easily be modi�ed to do
so.

2.5 Blackboard knowledge base

The knowledge sources in the system fall under three
broad areas of knowledge: garbage collection, knowl-
edge from physics, and knowledge from musical prac-
tice (a fourth knowledge area, that of auditory physi-
ology, is implicit in the front end). In this section, the
thirteen knowledge sources which are present in the
current system are briey described in turn.

Figure 4 is a graphical representation of the knowl-
edge base as a whole. It shows the hypothesis ab-
straction hierarchy used in the system with ten of the
knowledge sources overlaid. Each KS is represented
as a connected graph of nodes, where each node is a
hypothesis on the blackboard, and the arrows repre-
sent something like a \caused a change in" relation-
ship. The nodes where the arrows originate represent
the hypotheses that satisfy the precondition of the KS;
the nodes where the arrows terminate represent the hy-
potheses modi�ed by the action of the KS. The white
nodes represent competition hypotheses, which lie out-
side of the hypothesis abstraction hierarchy.

2.5.1 Track NoExplanation

The Track NoExplanationKS is the most primitive
of the physics-based knowledge sources. It is used as
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Figure 4: A graphical representation of the knowledge
base as a whole. It shows the hypothesis abstraction
hierarchy used in the system with ten of the knowl-
edge sources overlaid. Each KS is represented as a
connected graph of nodes, where each node is a hy-
pothesis on the blackboard, and the arrows represent
something like an \caused a change in" relationship.
The nodes where the arrows originate represent the hy-
potheses that satisfy the precondition of the KS; the
nodes where the arrows terminate represent the hy-
potheses modi�ed by the action of the KS. The white
nodes represent Competition hypotheses.

a last resort to create \bottom-up" pressure for the
exploration of new note hypotheses when there is no
\top-down" pressure.

Precondition: This KS searches through the list of
active track hypotheses. If any are not attached to
higher-level hypotheses, the precondition is satis�ed by
the one with the lowest frequency (from the TrackHyp
frequency slot).

Action: The Track NoExplanationKS creates a new
CompetitionHyp and places it on the blackboard. It
takes the TrackHyp's frequency slot and divides it by
1, 2, 3, 4, and 5. If any of the resulting frequencies are
in the range of valid note pitches, NoteHyps are pro-
posed at those pitches, and the TrackHyp is attached
as supporting evidence, by way of newly created Par-
tialHyps, as shown in Figure 4.

2.5.2 Note MissingPartial

The Note MissingPartial KS is another \physics-
based" knowledge source. It creates top-down pressure
to �nd support for a NoteHyp with empty partial slots.

Precondition: This KS searches through the list of
active note hypotheses on the blackboard. The pre-
condition is satis�ed if it can �nd a NoteHyp with an
empty partial slot (NoteHyps have implicit slots for
their �rst ten partials).

Action: The Note MissingPartialKS creates a new
PartialHyp to support the selected NoteHyp, corre-
sponding to the next partial in the note's harmonic
series (up to an upper frequency limit of 2.5 kHz, a
limit imposed by the system's front end).

2.5.3 Competition SherlockHolmes

The name of the Competition SherlockHolmesKS
comes from Holmes's principle: if all other possibilities
have been eliminated, the remaining one must be cor-
rect. This KS performs a form of \garbage collection".

Precondition: This KS searches the blackboard for
active competition hypotheses. The precondition is
satis�ed if it can �nd one that has only one active
supporting hypothesis.

Action: The Competition SherlockHolmes KS re-
moves the selected CompetitionHyp from the black-
board.

2.5.4 Partial NoSupport

The Partial NoSupport KS is another \physics-
based" knowledge source. It creates top-down pressure
to �nd support for newly created partial hypotheses.

Precondition: The precondition is satis�ed if there

is a partial hypothesis on the blackboard with no sup-
porting track hypothesis.
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Action: This KS's action is to search through the
track hypotheses on the blackboard for the one that
matches the expected frequency of the selected Par-
tialHyp most closely. If it can not �nd one within 30
Hz (an arbitrary threshold), it sets the PartialHyp's
rating to (-1.0), indicating that no match was found.
If a match is found, then the TrackHyp is attached to
the PartialHyp as support.

2.5.5 Note OctaveError

The Note OctaveError KS embodies a \physics-
based" piece of knowledge. If a Note hypothesis
has much stronger even-numbered partials than odd-
numbered partials (measured by an empirical thresh-
old), then it is likely that a Note one octave higher in
pitch is a better match to the data.

Precondition: This KS searches through the active
note hypotheses on the blackboard. It examines all of
the note hypotheses that have all of their partial slots
�lled. In each case, it averages the magnitudes of the
�rst three odd numbered partials and the �rst three
even numbered partials. If the even numbered partials'
average magnitude is more than 6 dB greater than that
of the odd numbered partials, then the precondition is
satis�ed.

Action: This KS's action is to remove the selected
NoteHyp from the blackboard, and to create a new
note hypothesis, with a pitch one octave higher, plac-
ing it on the blackboard, if there is not already an note
with that pitch on the blackboard.

2.5.6 Note PoorSupport

The Note PoorSupport KS performs a form of
garbage collection. It removes invalid note hypothe-
ses from the blackboard. Its precondition is tested af-
ter that of the Note OctaveError KS, so that octave
errors are detected before Notes are discarded.

Precondition: This KS's precondition is satis�ed if
there is a NoteHyp on the blackboard, whose partial
slots are all �lled, but whose rating is below a cuto�
threshold (empirically set to 0.6).

Action: The selected NoteHyp is removed from the
blackboard, along with its supporting PartialHyps.

2.5.7 Notes NoExplanation

The Notes NoExplanation KS embodies a piece of
musical knowledge: any two notes played simultane-
ously form a musical interval, de�ned by the di�er-
ence between their pitches mapped onto a discrete set
of interval types.

Precondition: If there are two simultaneously occur-
ing NoteHyps on the blackboard, both of which having

all of their partial slots �lled, and neither supporting
a higher-level hypothesis, then the precondition is sat-
is�ed.

Action: This KS's action is to place a new Interval-
Hyp on the blackboard, and to attach the two selected
NoteHyps as supporting evidence.

2.5.8 Note NoExplanation

The Note NoExplanationKS is a companion to the
Notes NoExplanationKS. It performs its action when
there is already an IntervalHyp on the blackboard, and
there is a single unexplained NoteHyp.

Precondition: The precondition is satis�ed if there
is an active NoteHyp on the blackboard, with all of its
Partial slots �lled, and there is a simultaneous Inter-
valHyp on the blackboard.

Action: This KS's action is somewhat complicated.
First, the NoteHyp is tested against all existing Inter-
valHyps. It is attached to any that it �ts into. If it
does not �t into any, then the NoteHyp represents a
new pitch class, and a set of new IntervalHyps is cre-
ated with all of the distinct simultaneously occurring
pitch classes.

2.5.9 ResolveNoteCompetition

The ResolveNoteCompetitionKS embodies a form
of garbage collection. It disables competitions between
notes when one of the competing notes is found to be
\valid". The other competing notes are not removed
from the blackboard, but they are not actively inves-
tigated unless they are reactivated by another knowl-
edge source.

Precondition: The precondition is satis�ed if there is
an active competition between NoteHyps on the black-
board and one of the competing NoteHyps has all of
its partial slots �lled and a rating above the note ac-
ceptance cuto�.

Action: The selected CompetitionHyp is taken o�
the blackboard. The selected NoteHyp is accepted as
a con�rmed hypothesis, and the remaining NoteHyps
are deactivated, but not removed from the blackboard.

2.5.10 Interval NoExplanation

The Interval NoExplanationKS embodies a form
of musical knowledge. It creates new chord hypotheses
when an IntervalHyp does not �t into existing Chord-
Hyps.

Precondition: The precondition is satis�ed if there
is an active IntervalHyp on the blackboard that does
not support any higher-level hypotheses.
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Action: This KS examines the selected IntervalHyp
and determines which triads it could be a member of
(intervals of a minor third, major third, or perfect �fth
can all be component parts of both major and minor
triads). The KS places a new CompetitionHyp on the
blackboard, connected to two new ChordHyps, both
of which are supported by the selected IntervalHyp.

2.5.11 Chord MissingInterval

The Chord MissingInterval KS embodies musical
knowledge. It creates top-down pressure to �nd sup-
port for a chord hypothesis.

Precondition: The precondition is satis�ed if there is
an active ChordHyp on the blackboard that is missing
one or more of its three component intervals (m3, M3,
P5).

Action: This KS places the missing interval(s) on the
blackboard (as predictions).

2.5.12 ResolveChordCompetition

The ResolveChordCompetition KS performs a
garbage collection task. It removes unnecessary chord
competitions from the blackboard.

Precondition: The precondition is satis�ed if there
is an active competition between multiple chords on
the blackboard, and one of the chords has a rating of
1.0.

Action: The KS removes the selected Competition-
Hyp from the blackboard, and deactivates the support-
ing ChordHyps with ratings below 1.0. Deactivated
ChordHyps are not removed from the blackboard.

2.5.13 Interval MissingNote

The Interval MissingNote KS embodies a piece
of musical knowledge. It creates top-down pressure to

�nd support for interval hypotheses.

Precondition: The precondition is satisi�ed if there
is an active IntervalHyp on the blackboard that is miss-
ing one or more of its component notes.

Action: The KS searches through the active Note-
Hyps on the blackboard to �ll in the note slots in the
selected IntervalHyp. If any note slots are not �lled
in, the KS creates new NoteHyps for the missing pitch

class and places them in competition.

3 An example transcription

In this section, the system's transcription of the Bach
example from Figures 1 and 2 is presented in the form
of a brief annotation of its progression from start to
�nish.

3.1 Steps 1{63 - Finding the First Note

When the system starts, there are no hypotheses on
the blackboard, so it reads a block of track data (cor-
responding to the �rst chord) from the front end out-
put and places the data on the blackboard in the form
of Track hypotheses (TrackHyps). Thus, at the �rst
time step, there are 25 TrackHyps on the blackboard,
all with \No Explanation" SOUs (meaning that they
do not support any higher level hypotheses).

On the �rst time step, the precondition for the
Track NoExplanation knowledge source (KS) is satis-
�ed and it performs its action, which in general places
several competing note hypotheses (NoteHyps) on the
blackboard. In this case, the action adds only one
NoteHyp to the blackboard because the frequency of
the TrackHyp is such that it can only support one
note in the range which the system considers (basi-
cally, notes that fall on the sta�). As an artifact of
the programming style, the NoteHyp is still attached
to a Competition hypothesis (CompetitionHyp), even
though there are no other NoteHyps in competition.
The unnecessary CompetitionHyp is removed from the
blackboard on the second time step. A screen shot of
the system after the �rst step is shown in Figure 5.

In the next set of time steps, the Note MissingPar-

tial and Partial NoSupport KSs are activated alter-
nately, as the blackboard seeks to �nd evidence to sup-
port the note hypothesis proposed in Step 1. In this
case, the �rst partial of the bass note was su�ciently
sharp (a common characteristic of string timbres) to
confuse the system into searching for the wrong note
(G instead of F]). Because the G note is not actu-
ally present in the signal, several Partials do not have
any support, as can be seen in Figure 6, which shows
the state of the system at Step 21. On Step 22, Note-
Hyp1 is removed from the blackboard due to its low
rating, and the search for notes begins again on Step
23 with the expansion of TrackHyp2, which the system
hypothesizes is the �rst partial of NoteHyp2 (A]4) or
the second partial of NoteHyp3 (A]3).

In steps 24{42, the supporting PartialHyps for Note-
Hyp3 are �lled in. TrackHyps were not found to sup-
port two of the PartialHyps, so the NoteHyp's rating
is fairly low. On step 43, the precondition for the
Note OctaveError KS is satis�ed, and NoteHyp3 is
removed from the blackboard.

NoteHyp2 is explored during steps 44{63. After all
of its PartialHyps are �lled in, NoteHyp2's rating is
0.712, which is above the cuto� threshold; NoteHyp2
is therefore accepted as a con�rmed hypothesis. The

note's color is changed from grey to black in the output
display, as shown in Figure 7.
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Figure 5: A screen capture of the blackboard system at Step 1. The panel on the left hand side contains a history

of the knowledge sources that have executed at each blackboard time step. In the center, the graphical output
of the system sits atop a graphical representation of a part of the blackboard data hierarchy (the arrows are
used to indicate \supports" relationships). On the right hand side, there are two panels: the top one contains a
detailed description of a selected hypothesis; the bottom one contains a summary of the actions performed on
the most recent time step. At the bottom of the right hand side are buttons used to control the operation of the
system. In Step 1, a Note hypothesis (NoteHyp1) was proposed to explain a Track hypothesis (TrackHyp1).

3.2 Steps 64{101 - A Second Note Leads
to an Interval

During steps 64{84, NoteHyp5 (C]3) is explored and

discarded as invalid. During steps 85{100, NoteHyp4
is explored and accepted as valid. In step 101, Note-
Hyp2 and NoteHyp4, the �rst two con�rmed notes, are
joined together into an Interval hypothesis (Interval-
Hyp1), as shown in Figure 8, by the Notes NoExplan-

ation KS, whose precondition is satis�ed when there
are two simultaneous notes on the blackboard which
do not support any higher level hypotheses. The two
notes form an interval of a minor third.

3.3 Steps 102{180 - Determining the
First Chord

On step 102, the new interval hypothesis satis-
�es the precondition of the Interval NoExplanation

KS, which proposes two competing chord hypotheses
(ChordHyp1 [F] Major] and ChordHyp2 [A] minor])

to account for the interval hypothesis.

On step 103, the precondition for the Chord Mis-

singInterval KS is satis�ed by both chord hypothe-
ses. In this case, the KS acts upon ChordHyp2, plac-
ing IntervalHyp2 and IntervalHyp3 on the blackboard,
corresponding to the missing major third and perfect
�fth of the A# minor triad.

At step 104, IntervalHyp3 satis�es the precondition
of the Interval MissingNote KS, and three Note-
Hyps are posted on the blackboard, corresponding to
the F pitch needed to complete the Interval. In steps
105{153, the system explores NoteHyps 6, 7, and 8.
None are valid and they are removed from the black-
board.

On step 154, the Chord MissingIntervalKS is ac-
tivated by ChordHyp1, resulting in the posting of In-
tervalHyp4 and IntervalHyp5 on the blackboard. On

step 155, the Interval MissingNote KS is activated
by IntervalHyp5, resulting in the posting of NoteHyp9,

9



Figure 6: A screen capture of the blackboard system
at Step 21.

Figure 7: A screen capture of the blackboard system
at Step 63.

NoteHyp10, and NoteHyp11 on the blackboard, cor-
responding to the three F#s in the acceptable pitch
range.

In steps 156{176, NoteHyp11 is explored. It is ac-

cepted as valid, added as support for IntervalHyps 4
and 5, leading to the acceptance of ChordHyp1 on step
180, as shown in Figure 9.

3.4 Step 181 - One Note missed . . .

On step 180, none of the KS preconditions are satis-
�ed, so the TrackHyp data for the second chord seg-
ment is loaded from the input �le and placed on the
blackboard. The preconditions are re-tested, and the
action of the Track NoExplanation KS is �red.

The system has made an error, however, which re-
veals its primary weakness (not coincidentally, the pri-

mary weakness of all polyphonic transcription systems
to date). As is apparent by looking back at Figure 1,

Figure 8: A screen capture of the blackboard system
at Step 101.

Figure 9: A screen capture of the blackboard system
at Step 180. ChordHyp1 is accepted as a correct hy-
pothesis.

the system has missed the F# in the soprano voice,
one octave above the F# in the bass voice. The sys-
tem, as currently formulated, will not detect the higher
note in any octave relation. This e�ect is due to the
physics of sound production (in that the upper note
in the octave relation shares all of its partials with the
lower note), and the system will require more musi-
cal knowledge or a better note \model" in order to
overcome it.

3.5 Steps 182{1712 { Business as usual

In steps 182{1711, the system progresses through the
�rst seven segments of the performance. In the �fth
segment, a C# in the soprano voice is missed because
it is one octave above the alto voice.

Toward the end of the sequence of actions, Note-
Hyp99 is explored. The state of the system after step

10



Figure 10: A screen capture of the blackboard system
at Step 1712.

1712 is shown in Figure 10.

3.6 Step 1713 { Another failure

On step 1713, NoteHyp99 is removed from the black-
board by the Note PoorSupport KS, due to a rela-
tively low rating. This, however, is an error, since the
D#5 pitch represented by NoteHyp99 is actually one
of the notes played in the performance.
The failure to accept NoteHyp99 is due to a model-

ing error in the Note hypothesis data class. The Note-
Hyp rating function is a heuristic function of the rat-
ings of the supporting PartialHyps. The same function
is used for NoteHyps of all pitches | herein lies the
problem. It turns out that the higher notes on a pi-
ano keyboard tend to have very weak upper partials,
a fact that is not taken into account by the current

rating function.

3.7 And so on . . .

The rest of the example proceeds as expected. Three
additional high-pitched notes are incorrectly removed
from the blackboard, and two more octave mistakes
are made. The resulting transcription is presented in
two forms. The �rst, a textual representation, is a
simple list of detected notes with their pitches and on-
set times, as shown in Figure 11. A graphical display
of the note onset data, presented in a manner that is
more amenable to comparison with the original musi-
cal score, is shown in Figure 12.

4 Conclusions

In this section, the limitations of the current system
will be described, followed by a description of the sys-
tem's successes, an assessment of the progress that
has been made toward a useful system for transcribing

NoteHyp2 A#4 1.510

NoteHyp4 C#4 1.510

NoteHyp11 F#3 1.510

NoteHyp13 B4 2.317

NoteHyp17 D#4 2.317

NoteHyp24 F#4 2.317

NoteHyp34 A#4 3.111

NoteHyp38 B4 3.870

NoteHyp40 D#4 3.870

NoteHyp43 G#3 3.870

NoteHyp45 F#4 3.870

NoteHyp54 C#4 4.665

NoteHyp61 F#3 4.665

NoteHyp67 A#4 4.665

NoteHyp77 G#3 5.501

NoteHyp94 F#3 6.256

NoteHyp96 A#4 6.256

NoteHyp104 B4 7.052

NoteHyp106 E4 7.052

NoteHyp114 G#3 7.052

NoteHyp130 E3 7.855

NoteHyp139 F#3 8.627

NoteHyp141 A#4 8.627

NoteHyp152 B3 9.411

Figure 11: Text output of the blackboard system for
the Bach example.

real-world musical signals, and a brief outline of some
of the next few goals in the current line of research.

As described in the Introduction, the original goal
in designing the present system was to build a sys-
tem capable of transcribing piano music in the style of
18th century counterpoint. The system, as it is imple-
mented today, solves a slightly di�erent problem than
was originally proposed: it can transcribe synthesized
piano performances in which no two notes are ever
played simultaneously an octave apart and where all
notes are within the somewhat limited range of B3
(123 Hz) to A5 (440 Hz).
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Figure 12: Graphical output of the blackboard system
for the Bach example.
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This change of scope is a result of two problems.
First, the failure to correctly detect octaves (as demon-
strated in the annotated example) is due to physical
ambiguityand to a lack of musical knowledge. It might
be possible to correct this de�ciency with one or two
new knowledge sources. In 18th century counterpoint,
there should be four notes in every chord. If only three
are detected directly, then the fourth will generally be
playing in unison with, or an octave above, one of the
other notes.

The second problem is due to a poor assumption
in the rating function for note hypotheses. It turns
out that the higher notes in a piano's range do not
have strong upper partials (and some of the partials
may well be above the 2.5 kHz cut-o� imposed by the
current front end implementation). The note hypoth-
esis rating function, however, does not take this into
account, and therefore note hypotheses with pitches
above A5 (440 Hz) will not generally have a high-
enough rating to be accepted as valid. This problem
might be �xed by a careful reimplementation of the
rating function.

A �nal limitation of the current system is imposed
by the front end. It tacitly makes several assumptions
about the acoustic signal, namely that all notes in a
chord are struck simultaneously and that the sounded
notes do not modulate in pitch. These limitations
might be addressed by a more complicated initial sig-
nal analysis, perhaps like the track analysis described
by Ellis [Ellis 1992].

While the current system su�ers from a number of
limitations, it marks an important �rst step toward a
working automatic transcription tool. The exibility
of the blackboard approach is its greatest asset, mak-
ing it possible to seamlessly integrate knowledge from
multiple domains into a single system. The result is
open-ended, allowing for great ease in implementing
future extensions.

In its current form, the blackboard transcription sys-
tem is capable of analyzing piano performances with
multiple simultaneously sounded notes, with the limi-
tations just described. It begins with a \jumbled grab-
bag" of partials and successfully detangles them, iden-
tifying the component notes and the chords that they

make up. In order to improve the current system to a
point at which it will be useful as an automated tran-
scription tool for real-world musical signals, a number
of extensions must be made. The current level of musi-
cal knowledge in the system is minimal, so one obvious
direction is to extend it further by including knowl-

edge about tonality (which would reduce the number
of unneccessarily explored note hypotheses) and about

melodic motion (which might further reduce the com-
putational load by helping the system make better pre-
dictions).

Currently, we are rethinking the computational ap-
proach taken in this research, with the explicit goal of
constructing a system that more closely resembles hu-
man musical understanding. Such a system will \per-
ceive" chord quality and tonality more directly, per-
haps through a mechanism based on the correlogram
[Slaney and Lyon 1993]. Weft analysis also appears to
be a worthy area of pursuit [Ellis 1995].
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